Suppose that f(x) and g(x) are differentiable functions such that f(5) = 4, f'(5) = 3, g(5) = 2,...
Question:
Suppose that f(x) and g(x) are differentiable functions such that f(5) = 4, f'(5) = 3, g(5) = 2, and g'(5) = 1. Find h'(5) when h(x) = f(x)/g(x).
Quotient Rule:
We can differentiate a wide variety of functions, including ones that are written as the ratio of two expressions. In order to find such a derivative, we need to apply the Quotient Rule.
{eq}(\frac{f}{g})' = \frac{f'g-fg'}{g^2} {/eq}
Answer and Explanation: 1
Become a Study.com member to unlock this answer! Create your account
View this answerTo find the derivative indicated, h'(5), we need to know four values: the values of the numerator, the denominator, and their derivatives at 5. This...
See full answer below.
Ask a question
Our experts can answer your tough homework and study questions.
Ask a question Ask a questionSearch Answers
Learn more about this topic:

from
Chapter 1 / Lesson 5What is the quotient rule? Read the definition of quotient rule and see the quotient rule formula, and practice applying it with some quotient rule examples.
Related to this Question
- Assume that (f/g) (x) = x^2 + 2x, where f and g are differentiable functions such that f (2) = 2 and f' (2)= 3. Find g' (2).
- Suppose that f\left ( x \right ) and g\left ( x \right ) are differentiable functions such that f\left ( 6 \right ) = 1, {f}' \left ( 6 \right ) = 9, g\left ( 6 \right ) = 8 and {g}' \left ( 6 \right ) = 3. Find {h}' \left ( 6 \right ) when h\left ( x \ri
- Suppose that f(x) and g(x) are differentiable functions such that f(1) = 2, f'(1) = 4, g(1)=5,\space \text{and} g' (1)= 3. Find h' (1) when h(x)=\frac{f(x)}{g(x)}.
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 2, f '(1) = -1, g(1) = -2 , and g'(1)=3 . Find h'(1). h(x) = ( x^2 + 8 ) g(x)
- Suppose that f(x) and g(x) are differentiable such that f(2) = 6, f '(2) = 4, g(2) = 7, and g '(2) = 1. Find h '(2) when h(x) = f(x) / g(x). h '(x) =
- Suppose that f is a differentiable function with f_x (8,0) = 8 and f_y (8, 0) = 7. Let w(u, v) = f (x(u, v), y(u, v)) where x = 8 cos u + 2 sin v and y = 8 cos u sin v. Find w_v (0, 0).
- Suppose that f(x) \text{ and } g(x) are differentiable functions such that f(6)=2, \ f (6)=3, \ g(6)=8, \text{ and } g (6)=9 . Find \frac{\text{d{\text{d}x} \left(f(x)g(x)\right) \text{ at } x=6 .
- Assume that x and y are differentiable functions of t. For the following, find \frac{dx}{dt} given that x = 3, y = 9, and \frac{dy}{dt} = 2. y^2 = 2xy + 27
- Suppose that f and g are functions that are differentiable at x = 1 and that f (1) = 2, f' (1) = -1, g(1) = -2, and g'(1) = 3. Find h' (1). h (x) = (x^2 + 9) g (x)
- Suppose that f and g are functions that are differentiable at x = 1 and that f (1) = 2, f' (1) = -1, g (1) = -2, and g' (1) = 3. Find h' (1). h (x) = (x^2 + 7) g (x).
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 4, f '(1) = - 6, g(1) = - 4, and g'(1) = 2. Find h'(1). h(x) = (f(x) g(x)) / (f(x) - g(x))
- Suppose that f and g are functions that are differentiable at X 1 and that f(1) 2, f (1) -1, g(1) -2, and g (1) 3. Find h 1). h(x) (x2 10)g(x) h(1)
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 4, f '(1) = -4, g(1) = -4, and g'(1) = 4. Find h'(1). h(x) = f(x)g(x) / (f(x) - g(x))
- Assume x and y are both differentiable functions of t and 3x^yy = 30 . Find \frac{dy}{dt} if \frac{dx}{dt} = 6 and x=1 .
- Suppose that x and y are both differentiable functions of t and are related by the equation y = x^2 + 3. Find frac{dy}{dt} , given that frac{dx}{dt} = 2 when x = 1.
- Suppose x, y, and s are differentiable functions of t that are related by the equation s^2 = 3x + y^2. If dx/dt = 2 and dy/dt = 4, then find ds/dt when x = 8 and y = 5.
- (a) Suppose that f and g are function that are differentiable at x = 1 and that f (1) = 4, f' (1) = -6, g (1) = -4, and g' (1) = 2. Find h'(1). h (x) = {f (x) g (x)} / {f (x) - g (x)}. (b) Find the de
- Let f(x,y,z) be a given differentiable function and define a new function g(x,y,z) = f(yz,zx,xy). suppose that f_x(1,1,1) = 1 , f_y(1,1,1) = 2 , f_z(1,1,1) = 3 . Find . (a) g_x(1,1,1) . (b) g_y(1,1,1)
- Let f(x, y, z) be a given differentiable function and define a new function g(x, y, z) = f(yz, zx, xy). Suppose that f_{x}(1, 1, 1) = 1, f_{y}(1, 1, 1) = 2, f_{z}(1, 1, 1) = 3. Find: a) g_{x}(1, 1, 1
- Let f (x, y, z) be a given differentiable function and define a new function g (x, y, z) = f (yz, zx, xy). Suppose that f_x (1, 1, 1) = 1, f_y (1, 1, 1) = 2, f_z (1, 1, 1) = 3. Find the following. (a)
- Suppose f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2, and g'(1) = 3. Find the value of h'(1), where h(x) = (x f(x)) / (x + g(x)).
- Suppose f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2, and g'(1) = 3. Find the value of h'(1). h(x) = (x^2 + 4) g(x)
- Suppose y = f(x) is differentiable function of x that satisfies the equation x^2y+y^2 = x^3. Find dy/dx implicitly
- Let f be a differentiable function. If h (x) = (1 + f (3x))^2, find h' (x).
- Suppose f is differentiable on R. Let F(x) = f(e^x) and G(x) = e^f(x). Find expressions for (a) F'(x) and (b) G'(x).
- Suppose f \text{ and } g are functions that are differentiable at x = 1 and that f(1) = 2, \ f (1) = 1, \ g(1) = 2, \text{ and } g (1) = 3 . Find the value of h (1) , where h(x) = (x^2 + 11) g(x) .
- Suppose f and g are functions that are differentiable at x = 2 and that f' (2) = 1, f (2) = 3, g' (2) = -1 and g (2) = 2. Then find the value of h' (2) if h (x) = x. f (x).
- Suppose that f(x) \enspace and \enspace g(x) are differentiable functions such that f(1) =2, f'(1) = 5, g(1) =8 , g'(1) =4 . Find h'(1) when h(x) = \frac{f(x)}{g(x)}
- Suppose u and v are differentiable functions of x and that u(0) = 5, u'(0) = -3, v(0) = -1, v'(0) = 2. Find the value of d(7v - 2u)/dx at x = 1.
- Assume that x and y are differentiable functions of t . Find \frac{\text{d}y}{\text{d}t}(4) using the given values: xy=x+4,\ \frac{\text{d}x}{\text{d}t}(4)= 5 .
- Let p ( t ) = f ( g ( t ) , h ( t ) ) , where f is differentiable, g ( 2 ) = 4 , g ? ( 2 ) = ? 3 , h ( 2 ) = 5 , h ? ( 2 ) = 6 , f x ( 4 , 5 ) = 2 , f y ( 4 , 5 ) = 8. . Find p ? ( 2 ) .
- Show that f ( x ) = { x 2 sin ( 1 x ) , i f x 0 0 , i f x = 0 is differentiable at x = 0 and find f ( 0 )
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 1, \; f'(1) = -3, \; g(1) = 2, and g'(1) = 5. If h(x)=f(x)g(x), find h'(1).
- Assuming that the equations define x and y implicitly as differentiable functions x = f(t), y = g(t), find
- Suppose f is differentiable on R. Let F(x) = f(ex) and G(x) = ef(x). Find expressions for (a) F (x) and (b) G (x)
- Given that s^2 = x^2 + y^2, where x and y and s are differentiable function of t, find \frac{ds}{dt} when s = 20, x = 15, and \frac{dy}{dt} = 4 and \frac{dx}{dt} = 5.
- Assume that f(x) and g(x) are differentiable for all x. Let \displaystyle h(x) =\frac{f(x)g(x)}{5}, find h'(x). h'(x) = _____
- Assume that f(x) and g(x) are differentiable for all x. Let h(x) = 2f(x) + \frac{g(x)}{7}, find h'(x).
- If g is the inverse function of a differentiable function f (x) such that f (-1) = 8, f (1) = 6, f' (-1) = 12, and f' (1) = 3. Find g' (8).
- Assume that x and y are both differentiable functions of the required value of dy/dt and dx/dt. xy=8 Find dx/dt, when x=1, given that dy/dt=-7.
- Assume that x and y are both differentiable functions of the required value of dy/dt and dx/dt. xy=8 Find dy/dt, when x=6, given that dx/dt=12.
- Assume that x and y are both differentiable functions of t and find the required values of \frac{dy}{dt} and \frac{dx}{dt}. (a) Find \frac{dy}{dt} when x = 5, given that \frac{dx}{dt} = 3. \frac{dy}
- Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. xy = 4 a) Find dy/dt, given x = 8 and dx/dt = 11.(b) Find dx/dt, given x = 1 and dy/dt=-8.
- Assume that x and y are both differentiable functions of t and find the required values of \frac{dy}{dt} and \frac{dx}{dt} y=\sqrt x (a) Find \frac{dx}{dt}, given x = 25 and \frac{dy}{dt} = 3. (
- Assume that x and y are both differentiable functions of t , and find the required values of d y d t and d x d t . y = 2 ( x 2 ? 3 x ) (a) Find d y d t when x = 3 , given that d x d t = 5
- Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. xy = 2 a. Find dy/dt, when x = 4, given that dx/dt = 13. b. Find dx/dt, when x = 1, given that dy/dt = -9.
- 1. Assume that x and y are both differentiable functions of t and find the required values of d y d t and d x d t . (a) Find d y d t when x = 5, given that d x d t = 5. (b) Find d x d t whe
- Assume that x and y are both differentiable functions of t and find the required values of d y d t , d x d t , x y = 4. a) find d y d t , given that x=2 and d x d t = 14. , b) find d x d t given x=1 and d y d t = 6
- Assume that x and y are both differentiable functions of t and find the required values of dy / dt and dx / dt. xy = 8. (a) Find dy / dt, given x = 6 and dx / dt = 13. (b) Find dx / dt, given x = 1 a
- Given x^2 + y^2 = 225. Assume that x and y are both differentiable functions of t and find the required values of dx/dt. Find dy/dt, given x = 9, y = 12, and dx/dt = 8. Find dx/dt, given x = 12, y = 9, and dy/dt = 4.
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{.20in} & \hfill\underline{\text{Find\hfill & \hspace{.20in
- 1. Assume that x and y are both differentiable functions of t, find the required values of dy/dt and dx/dt. xy = 4 (a) Find dy/dt, when x = 2, given that dx/dt = 10. (b) Find dx/dt, when x = 1, given
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{0.19in} & \hfill\underline{\text{Find\hfill & \hspace{0.19
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{.19in} & \hfill\underline{\text{Find\hfill & \hspace{.19in
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{0.20in} & \hfill\underline{\text{Find\hfill & \hspace{0.20
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2, g'(1) = 3. Suppose h(x) = f(x)g(x). Find the value of h'(1).
- Suppose u and v are differentiable functions at t = 0 with u(0) = <0,1,1>, u'=<0,7,1>, v(0) = <0,1,1>, and v'(0) = <1,1,2>. Evaluate: a) \frac {d}{dt} (u.v)|_{t=0}
- Let f(x) = (2 - |x - 4|) / x. Find all values of x where f is not differentiable.
- Suppose f ? 1 is the inverse function of a differentiable function f and f ( 4 ) = 5 , f ? ( 4 ) = 2 3 . Find ( f ? 1 ) ? ( 5 ) .
- Suppose g is the inverse function of a differentiable function f and G(x) = \frac{1}{g(x)} . Given f(2)=3, f'(2) =1/4 , find G'(3)
- Suppose g is the inverse function of a differentiable function g and G(x) = \dfrac{1}{ g(x)} . If f(3) = 2 \enspace and \enspace f'(3) = \frac{1 }{9} , find G''(2)
- Find the values of m and b that make the following function differentiable; f(x) = \left\{ {\matrix{ x^3 \cr {mx + b} \cr } } \right.~~\matrix{ {x \le 1} \cr {x greater than 1} \cr }
- Let f(x, y, z) be a given differentiable function and define a new function g(x, y, z) = f(yz, zx, xy). Suppose that f_x(1, 1, 1) = 1, f_y(1, 1, 1) = 2, f_z(1, 1, 1) = 3. Find the following.g_x
- Find a function f such that |f| is differentiable, but f is not.
- Suppose that f(x) = - x^3 - 6 x + 1 is differentiable and has an inverse and f(2) = - 19. Find (f - 1)'(- 19).
- If z = f(x, y), where f is differentiable, and x = g(t) , y = h(t) g(4) = 5 , h(4) = -5 g'(4) = -5, h'(4) = -1 { f_x (5, -5) = 1, f_y (5, -5) = 6 } find dz/dt when t = 4. { \frac{dz}{dt} =
- Suppose f is a differentiable function of x and y, and g(r,s)=f(5r-s, s^2-9r). Use the table to calculate g_r(9,8) and g_s(9,8). &f&g&f_x&f_y (37,-17)&5&1&3&8 (9,8)&1&5&6&2
- Suppose f is a differentiable function of x and y , and g(r,s) = f(5r-s, s^2-9r) . Use the table below to calculate g_r(9,8) and g_s(9,8) | | f | g | f_x | f_y | (37,-17) | 5 | 1 | 3 |
- Suppose that f(x) and g(x) are differentiable functions such that f(3) = 4, g(3) =9, f'(3) = -2, g'(3) = 5 . Calculate h'(3) for h(x) = \sqrt{f(x) \cdot g(x)}
- Suppose that f(x) and g(x) are differentiable functions such that f(3) =-4, g(3) = 9, f'(3) =-2, g'(3) = 5 . Calculate h'(3) for a. h(x) = \sqrt{f(x) \cdot g(x)} b. h(x) = (\frac{f(x)}
- Suppose that f(x) = 8x+3cos(x) is differentiable and has an inverse and f(pi/2)=4pi. Find (f^(-1))'(4pi).
- A. Suppose \int\limits_0^1 f(t) dt = 3. Find \int\limits_1^{1.5} f(3 - 2t) dt. B. Let f be twice differentiable with f(0) = 6, f(1) = 5, and f'(1) = 2. Find \int\limits_0^1 xf''(x) dx.
- Suppose f is a differentiable function such that (1) f(x + y) = f(x) + f(y) + 2xy for all real numbers x and y and (2) \lim_{h \to 0} \frac{f(h)}{h} = 7. Determine f(0) and find the expression for f(x). (Hint: find f'(x).)
- Find A and B given that the function, f(x) is differentiable at x=1. f(x)= \begin{cases} x^2-5 & x<1 \\ Ax^2+Bx & x \geq1 \end {cases}
- Show how to find all values at which a function is differentiable.
- Where is the function f(x) = |x| differentiable?
- Where is the function not differentiable? a) f(x) = (x^2 - 4)^{1 / 3}. b) f(x) = 3 x^2 - 5 x.
- (a) Consider the function f(x, y) = xy, where x = u(t) and y = v(t) (here u and v are differentiable functions of t). Compute \frac{df}{dt}. The result should look familiar. (b) Now let f(x, y) =
- Suppose f -1 is the inverse function of a differentiable function f and f(4) = 2, f'(4) = 7/8. Find (f -1)'(2).
- Suppose g is an inverse function of a differentiable function f and G(x) = \displaystyle \frac{1}{g(x)}. If f(5) = 4 and f'(5) = \displaystyle \frac{1}{25}, find G'(4).
- Assuming that this function is differentiable, solve y = \frac{1 + xf(x)}{\sqrt {x.
- Suppose f and g are differentiable functions with the following values x & f(x) & f'(x) & g(x) & g'(x) 1 & 3 & -5 & 2 & -1 Find the derivatives of the following at x = 1 : (a) f(x) - 2g(x)
- Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and g(x) = f^(-1)(x) for all x. What is the value g'(3)? (A) -1/2 (B) 1/8 (C) 1/6 (D) 1/3
- Suppose f and g are functions that are differentiable at x= 1 and that f(1)= 7, f '(1)= 9, g(1)= 6, and g '(1)= 2. Find the value of h '(1). h(x)= \frac{f(x)g(x)}{f(x) - g(x)}
- Assume x and y are both differentiable functions of t and 8x^9y = 80. Find \frac{dy}{dt} if \frac{dx}{dt} = 9 and x = 1 Find \frac{dx}{dt} if \frac{dy}{dt} = 7 and y = 2
- Assume x and y are both differentiable functions of t and 7x^5y = 14. 1. Find \frac{dy}{dt} if \frac{dx}{dt} = 3 and x = 1. 2. Find \frac{dx}{dt} if \frac{dy}{dt} = 3 and y = 2.
- Assume x and y are both differentiable functions of t and 6x^{9}y=60 1. Find dy/dt if dx/dt=8 and x=1 2. Find dx/dt if dy/dt=5 and y=2
- Suppose u \enspace and \enspace v are differentiable functions of x . Given u(1) = 5, u'(1)=-5, v(1) = 6, v'(1) =-2 , find \frac{d}{dx}(uv) at x=1
- Suppose h ( x ) = ? 1 x 2 + 3 + 8 , If f ( x ) = ? x + 8 , then find a function g such that h = f ? g .
- Suppose h ( x ) = ? 1 x 2 + 3 + 8 , If f ( x ) = ? x , then find a function g such that h = f ? g .
- Suppose f(x) is a differentiable function with f(2) = 4 and f'(2) = 2. Compute the following: a. g'(2) = where g(x) = (x + 3)f(x). b. h'(2) = where h(x) = 3^x(x^2 + 1)f(x)
- Suppose u and v are differentiable functions of x and that u(0) = 5, u'(0) = -3, v(0) = -1, v'(0) = 2. Find the value of d(v/u)/dx at x = 1.
- Suppose u and v are differentiable functions of x and that u(0) = 5, u'(0) = -3, v(0) = -1, v'(0) = 2. Find the value of d(u/v)/dx at x = 1.
- Suppose u and v are differentiable functions of x and that u(0) = 5, u'(0) = -3, v(0) = -1, v'(0) = 2. Find the value of d(uv)/dx at x = 1.
- Assuming x and y are differentiable functions of t, find the indicated quantity. (a) x^2 + x y? y^3 = 7, x = 3, y = 2, \frac{dy}{dt} = -2, find \frac{dx}{dt}. (b) x+ e ^{y-1} +ln(y) = 3, x = 2, y = 1
- Let W(s,t) = F(u(s,t), v(s,t)) where F, u and v are differentiable u(1,0) = 2 v(1,0) = 3 u_{s}(1,0) = -2 v_{s}(1,0) = 5 u_{t}(1,0) = 6 v_{t}(1,0) = 4 F_{u}(2,3) = -1 F_{u}(2,3) = 10 Find W_{s}(1,0)
- Find a and b such that the function f(x)=\begin{cases} x^{2}-6x+12& \text{ if } x\leq 4 \\ ax+b& \text{ if } x> 4\end{cases} is differentiable everywhere.
- Find: Suppose f is a differentiable function such that 1. f(g(x)) = x and f (x) = 1 + \left [ f(x) \right ] 2. Show that g (x) = \frac{1}{(1 + x^2)}.
- Suppose f is a differentiable function of x and y, and g(r,s)=f(4r-s, \ s^2-7r). Calculate g_r(4,1) and g_s(4,1) using the given table of values. \displaystyle \begin{array}{|c|c|c|c|c|} \hline