Suppose that f(x) and g(x) are differentiable functions such that f(1) = 2, f'(1) = 4,...
Question:
Suppose that f(x) and g(x) are differentiable functions such that {eq}f(1) = 2, f'(1) = 4, g(1)=5,\space \text{and} g' (1)= 3 {/eq}. Find {eq}h' (1) {/eq} when {eq}h(x)=\frac{f(x)}{g(x)} {/eq}.
Quotient Rule:
The quotient rule determines the derivative of a ratio via a differentiation formula involving both the sub-functions and their derivatives.
To implement the quotient rule, we follow the following equation:
{eq}\displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{b(x)}{c(x)}\right)= \frac{c(x)b'(x) - b(x)c'(x)}{(c(x))^2} {/eq}
Answer and Explanation:
Become a Study.com member to unlock this answer! Create your account
View this answerThe quotient rule applied to {eq}h(x) {/eq} gives us {eq}h'(x) {/eq}.
Furthermore, we'll substitute {eq}x=1 {/eq} to get what we need:
{eq}\begin...
See full answer below.
Ask a question
Our experts can answer your tough homework and study questions.
Ask a question Ask a questionSearch Answers
Learn more about this topic:

from
Chapter 1 / Lesson 5What is the quotient rule? Read the definition of quotient rule and see the quotient rule formula, and practice applying it with some quotient rule examples.
Related to this Question
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 2, f '(1) = -1, g(1) = -2 , and g'(1)=3 . Find h'(1). h(x) = ( x^2 + 8 ) g(x)
- Suppose that f is a differentiable function with f_x (8,0) = 8 and f_y (8, 0) = 7. Let w(u, v) = f (x(u, v), y(u, v)) where x = 8 cos u + 2 sin v and y = 8 cos u sin v. Find w_v (0, 0).
- Assume x and y are both differentiable functions of t and 3x^yy = 30 . Find \frac{dy}{dt} if \frac{dx}{dt} = 6 and x=1 .
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 4, f '(1) = - 6, g(1) = - 4, and g'(1) = 2. Find h'(1). h(x) = (f(x) g(x)) / (f(x) - g(x))
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 4, f '(1) = -4, g(1) = -4, and g'(1) = 4. Find h'(1). h(x) = f(x)g(x) / (f(x) - g(x))
- Suppose that f and g are functions that are differentiable at x = 1 and that f (1) = 2, f' (1) = -1, g(1) = -2, and g'(1) = 3. Find h' (1). h (x) = (x^2 + 9) g (x)
- Suppose that f and g are functions that are differentiable at X 1 and that f(1) 2, f (1) -1, g(1) -2, and g (1) 3. Find h 1). h(x) (x2 10)g(x) h(1)
- Suppose that f and g are functions that are differentiable at x = 1 and that f (1) = 2, f' (1) = -1, g (1) = -2, and g' (1) = 3. Find h' (1). h (x) = (x^2 + 7) g (x).
- Suppose that f(x) and g(x) are differentiable such that f(2) = 6, f '(2) = 4, g(2) = 7, and g '(2) = 1. Find h '(2) when h(x) = f(x) / g(x). h '(x) =
- Suppose f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2, and g'(1) = 3. Find the value of h'(1). h(x) = (x^2 + 4) g(x)
- Suppose f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2, and g'(1) = 3. Find the value of h'(1), where h(x) = (x f(x)) / (x + g(x)).
- Assume that x and y are differentiable functions of t. For the following, find \frac{dx}{dt} given that x = 3, y = 9, and \frac{dy}{dt} = 2. y^2 = 2xy + 27
- Let f be a differentiable function. If h (x) = (1 + f (3x))^2, find h' (x).
- (a) Suppose that f and g are function that are differentiable at x = 1 and that f (1) = 4, f' (1) = -6, g (1) = -4, and g' (1) = 2. Find h'(1). h (x) = {f (x) g (x)} / {f (x) - g (x)}. (b) Find the de
- Suppose that x and y are both differentiable functions of t and are related by the equation y = x^2 + 3. Find frac{dy}{dt} , given that frac{dx}{dt} = 2 when x = 1.
- Suppose x, y, and s are differentiable functions of t that are related by the equation s^2 = 3x + y^2. If dx/dt = 2 and dy/dt = 4, then find ds/dt when x = 8 and y = 5.
- Suppose that f(x) and g(x) are differentiable functions such that f(0) = 9, \enspace f'(0) = 7, \enspace g(0) = 4, \enspace g'(0) = 2. Find \dfrac{d}{dx} \left(f(x)g(x)\right) \Bigg|_{x = 0}.
- Suppose that f(x) and g(x) are differentiable functions such that f(5) = 4, f'(5) = 3, g(5) = 2, and g'(5) = 1. Find h'(5) when h(x) = f(x)/g(x).
- Suppose y = f(x) is differentiable function of x that satisfies the equation x^2y+y^2 = x^3. Find dy/dx implicitly
- Suppose f \text{ and } g are functions that are differentiable at x = 1 and that f(1) = 2, \ f (1) = 1, \ g(1) = 2, \text{ and } g (1) = 3 . Find the value of h (1) , where h(x) = (x^2 + 11) g(x) .
- Suppose f and g are functions that are differentiable at x = 2 and that f' (2) = 1, f (2) = 3, g' (2) = -1 and g (2) = 2. Then find the value of h' (2) if h (x) = x. f (x).
- Given that s^2 = x^2 + y^2, where x and y and s are differentiable function of t, find \frac{ds}{dt} when s = 20, x = 15, and \frac{dy}{dt} = 4 and \frac{dx}{dt} = 5.
- Suppose u and v are differentiable functions of x and that u(0) = 5, u'(0) = -3, v(0) = -1, v'(0) = 2. Find the value of d(7v - 2u)/dx at x = 1.
- Suppose f is differentiable on R. Let F(x) = f(e^x) and G(x) = e^f(x). Find expressions for (a) F'(x) and (b) G'(x).
- Suppose that f\left ( x \right ) and g\left ( x \right ) are differentiable functions such that f\left ( 6 \right ) = 1, {f}' \left ( 6 \right ) = 9, g\left ( 6 \right ) = 8 and {g}' \left ( 6 \right ) = 3. Find {h}' \left ( 6 \right ) when h\left ( x \ri
- Assume that x and y are differentiable functions of t . Find \frac{\text{d}y}{\text{d}t}(4) using the given values: xy=x+4,\ \frac{\text{d}x}{\text{d}t}(4)= 5 .
- Let f(x,y,z) be a given differentiable function and define a new function g(x,y,z) = f(yz,zx,xy). suppose that f_x(1,1,1) = 1 , f_y(1,1,1) = 2 , f_z(1,1,1) = 3 . Find . (a) g_x(1,1,1) . (b) g_y(1,1,1)
- Let f(x, y, z) be a given differentiable function and define a new function g(x, y, z) = f(yz, zx, xy). Suppose that f_{x}(1, 1, 1) = 1, f_{y}(1, 1, 1) = 2, f_{z}(1, 1, 1) = 3. Find: a) g_{x}(1, 1, 1
- Let f (x, y, z) be a given differentiable function and define a new function g (x, y, z) = f (yz, zx, xy). Suppose that f_x (1, 1, 1) = 1, f_y (1, 1, 1) = 2, f_z (1, 1, 1) = 3. Find the following. (a)
- Assume that f(x) and g(x) are differentiable for all x. Let h(x) = 2f(x) + \frac{g(x)}{7}, find h'(x).
- Assume that f(x) and g(x) are differentiable for all x. Let \displaystyle h(x) =\frac{f(x)g(x)}{5}, find h'(x). h'(x) = _____
- Assume that (f/g) (x) = x^2 + 2x, where f and g are differentiable functions such that f (2) = 2 and f' (2)= 3. Find g' (2).
- Let p ( t ) = f ( g ( t ) , h ( t ) ) , where f is differentiable, g ( 2 ) = 4 , g ? ( 2 ) = ? 3 , h ( 2 ) = 5 , h ? ( 2 ) = 6 , f x ( 4 , 5 ) = 2 , f y ( 4 , 5 ) = 8. . Find p ? ( 2 ) .
- Show that f ( x ) = { x 2 sin ( 1 x ) , i f x 0 0 , i f x = 0 is differentiable at x = 0 and find f ( 0 )
- Suppose f is differentiable on R. Let F(x) = f(ex) and G(x) = ef(x). Find expressions for (a) F (x) and (b) G (x)
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 1, \; f'(1) = -3, \; g(1) = 2, and g'(1) = 5. If h(x)=f(x)g(x), find h'(1).
- How to find where a function is differentiable?
- Suppose u and v are differentiable functions at t = 0 with u(0) = <0,1,1>, u'=<0,7,1>, v(0) = <0,1,1>, and v'(0) = <1,1,2>. Evaluate: a) \frac {d}{dt} (u.v)|_{t=0}
- Assume that x and y are both differentiable functions of the required value of dy/dt and dx/dt. xy=8 Find dx/dt, when x=1, given that dy/dt=-7.
- Assume that x and y are both differentiable functions of the required value of dy/dt and dx/dt. xy=8 Find dy/dt, when x=6, given that dx/dt=12.
- Let f(x) = (2 - |x - 4|) / x. Find all values of x where f is not differentiable.
- Assuming that the equations define x and y implicitly as differentiable functions x = f(t), y = g(t), find
- Assume that x and y are both differentiable functions of t , and find the required values of d y d t and d x d t . y = 2 ( x 2 ? 3 x ) (a) Find d y d t when x = 3 , given that d x d t = 5
- Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. xy = 4 a) Find dy/dt, given x = 8 and dx/dt = 11.(b) Find dx/dt, given x = 1 and dy/dt=-8.
- Assume that x and y are both differentiable functions of t and find the required values of \frac{dy}{dt} and \frac{dx}{dt} y=\sqrt x (a) Find \frac{dx}{dt}, given x = 25 and \frac{dy}{dt} = 3. (
- Assume that x and y are both differentiable functions of t and find the required values of \frac{dy}{dt} and \frac{dx}{dt}. (a) Find \frac{dy}{dt} when x = 5, given that \frac{dx}{dt} = 3. \frac{dy}
- Show how to find all values at which a function is differentiable.
- 1. Assume that x and y are both differentiable functions of t, find the required values of dy/dt and dx/dt. xy = 4 (a) Find dy/dt, when x = 2, given that dx/dt = 10. (b) Find dx/dt, when x = 1, given
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{0.20in} & \hfill\underline{\text{Find\hfill & \hspace{0.20
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{.20in} & \hfill\underline{\text{Find\hfill & \hspace{.20in
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{0.19in} & \hfill\underline{\text{Find\hfill & \hspace{0.19
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{.19in} & \hfill\underline{\text{Find\hfill & \hspace{.19in
- Given x^2 + y^2 = 225. Assume that x and y are both differentiable functions of t and find the required values of dx/dt. Find dy/dt, given x = 9, y = 12, and dx/dt = 8. Find dx/dt, given x = 12, y = 9, and dy/dt = 4.
- 1. Assume that x and y are both differentiable functions of t and find the required values of d y d t and d x d t . (a) Find d y d t when x = 5, given that d x d t = 5. (b) Find d x d t whe
- Assume that x and y are both differentiable functions of t and find the required values of d y d t , d x d t , x y = 4. a) find d y d t , given that x=2 and d x d t = 14. , b) find d x d t given x=1 and d y d t = 6
- Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. xy = 2 a. Find dy/dt, when x = 4, given that dx/dt = 13. b. Find dx/dt, when x = 1, given that dy/dt = -9.
- Assume that x and y are both differentiable functions of t and find the required values of dy / dt and dx / dt. xy = 8. (a) Find dy / dt, given x = 6 and dx / dt = 13. (b) Find dx / dt, given x = 1 a
- Find the values of m and b that make the following function differentiable; f(x) = \left\{ {\matrix{ x^3 \cr {mx + b} \cr } } \right.~~\matrix{ {x \le 1} \cr {x greater than 1} \cr }
- Find A and B given that the function, f(x) is differentiable at x=1. f(x)= \begin{cases} x^2-5 & x<1 \\ Ax^2+Bx & x \geq1 \end {cases}
- Assuming that this function is differentiable, solve y = \frac{1 + xf(x)}{\sqrt {x.
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2, g'(1) = 3. Suppose h(x) = f(x)g(x). Find the value of h'(1).
- Suppose that f(x) = - x^3 - 6 x + 1 is differentiable and has an inverse and f(2) = - 19. Find (f - 1)'(- 19).
- Let f(x, y, z) be a given differentiable function and define a new function g(x, y, z) = f(yz, zx, xy). Suppose that f_x(1, 1, 1) = 1, f_y(1, 1, 1) = 2, f_z(1, 1, 1) = 3. Find the following.g_x
- Suppose f is a differentiable function of x and y , and g(r,s) = f(5r-s, s^2-9r) . Use the table below to calculate g_r(9,8) and g_s(9,8) | | f | g | f_x | f_y | (37,-17) | 5 | 1 | 3 |
- Suppose f is a differentiable function of x and y, and g(r,s)=f(5r-s, s^2-9r). Use the table to calculate g_r(9,8) and g_s(9,8). &f&g&f_x&f_y (37,-17)&5&1&3&8 (9,8)&1&5&6&2
- Suppose that f(x) \text{ and } g(x) are differentiable functions such that f(6)=2, \ f (6)=3, \ g(6)=8, \text{ and } g (6)=9 . Find \frac{\text{d{\text{d}x} \left(f(x)g(x)\right) \text{ at } x=6 .
- (a) Consider the function f(x, y) = xy, where x = u(t) and y = v(t) (here u and v are differentiable functions of t). Compute \frac{df}{dt}. The result should look familiar. (b) Now let f(x, y) =
- Suppose f and g are functions that are differentiable at x= 1 and that f(1)= 7, f '(1)= 9, g(1)= 6, and g '(1)= 2. Find the value of h '(1). h(x)= \frac{f(x)g(x)}{f(x) - g(x)}
- Suppose that f(x) = 8x+3cos(x) is differentiable and has an inverse and f(pi/2)=4pi. Find (f^(-1))'(4pi).
- Find: Suppose f is a differentiable function such that 1. f(g(x)) = x and f (x) = 1 + \left [ f(x) \right ] 2. Show that g (x) = \frac{1}{(1 + x^2)}.
- Assume x and y are both differentiable functions of t and 7x^5y = 14. 1. Find \frac{dy}{dt} if \frac{dx}{dt} = 3 and x = 1. 2. Find \frac{dx}{dt} if \frac{dy}{dt} = 3 and y = 2.
- Assume x and y are both differentiable functions of t and 8x^9y = 80. Find \frac{dy}{dt} if \frac{dx}{dt} = 9 and x = 1 Find \frac{dx}{dt} if \frac{dy}{dt} = 7 and y = 2
- Assume x and y are both differentiable functions of t and 6x^{9}y=60 1. Find dy/dt if dx/dt=8 and x=1 2. Find dx/dt if dy/dt=5 and y=2
- Suppose g is an inverse function of a differentiable function f and G(x) = \displaystyle \frac{1}{g(x)}. If f(5) = 4 and f'(5) = \displaystyle \frac{1}{25}, find G'(4).
- Suppose f -1 is the inverse function of a differentiable function f and f(4) = 2, f'(4) = 7/8. Find (f -1)'(2).
- Suppose f is a differentiable function of x and y, and g(r,s)=f(5r-s,s^{2}-6r) . Use the table of values below to calculate g_{r} (9,4) and g_{s} (9,4)g_{r}(9,4)= g_{s}(9,4)=
- If z = f(x, y), where f is differentiable, and x = g(t) , y = h(t) g(4) = 5 , h(4) = -5 g'(4) = -5, h'(4) = -1 { f_x (5, -5) = 1, f_y (5, -5) = 6 } find dz/dt when t = 4. { \frac{dz}{dt} =
- Show that the function f(x, y) is differentiable at (0, 0), but not continuously differentiable at (0, 0). f(x,y)= (x - y)^2\sin (\frac{1}{x} -y),\ x \neq y
- Suppose f and g are differentiable functions with the following values x & f(x) & f'(x) & g(x) & g'(x) 1 & 3 & -5 & 2 & -1 Find the derivatives of the following at x = 1 : (a) f(x) - 2g(x)
- Suppose h and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2 and g'(1) = 3. Find the value of h'(1). h(x) = \frac{x f(x)}{x + g(x)}. The answer should be
- Suppose f(x) is a differentiable function with f(2) = 4 and f'(2) = 2. Compute the following: a. g'(2) = where g(x) = (x + 3)f(x). b. h'(2) = where h(x) = 3^x(x^2 + 1)f(x)
- A. Suppose \int\limits_0^1 f(t) dt = 3. Find \int\limits_1^{1.5} f(3 - 2t) dt. B. Let f be twice differentiable with f(0) = 6, f(1) = 5, and f'(1) = 2. Find \int\limits_0^1 xf''(x) dx.
- Suppose f is a differentiable function of x and y, and g(r,s)=f(4r-s, \ s^2-7r). Calculate g_r(4,1) and g_s(4,1) using the given table of values. \displaystyle \begin{array}{|c|c|c|c|c|} \hline
- Where is the function f(x) = |x| differentiable?
- Where is the function not differentiable? a) f(x) = (x^2 - 4)^{1 / 3}. b) f(x) = 3 x^2 - 5 x.
- Suppose f is a differentiable function such that (1) f(x + y) = f(x) + f(y) + 2xy for all real numbers x and y and (2) \lim_{h \to 0} \frac{f(h)}{h} = 7. Determine f(0) and find the expression for f(x). (Hint: find f'(x).)
- Suppose u and v are differentiable functions of x and that u(0) = 5, u'(0) = -3, v(0) = -1, v'(0) = 2. Find the value of d(uv)/dx at x = 1.
- Suppose u and v are differentiable functions of x and that u(0) = 5, u'(0) = -3, v(0) = -1, v'(0) = 2. Find the value of d(v/u)/dx at x = 1.
- Suppose u and v are differentiable functions of x and that u(0) = 5, u'(0) = -3, v(0) = -1, v'(0) = 2. Find the value of d(u/v)/dx at x = 1.
- If f(x) is a function differentiable at x = 1 and f(1) = 1/8. What is the value of f(x) - f(1)
- The function f is differentiable and \int_0^x (4f(t)+5t)dt=\sin (x). Determine the value of f'(\frac{\pi}{6}). a. \frac{5}{4} b. \frac{\sqrt 3}{8}-\frac{5\pi}{24} c. 0 d. \frac{\sqrt 3}{2} e. -\frac{11}{8}
- Assuming x and y are differentiable functions of t, find the indicated quantity. (a) x^2 + x y? y^3 = 7, x = 3, y = 2, \frac{dy}{dt} = -2, find \frac{dx}{dt}. (b) x+ e ^{y-1} +ln(y) = 3, x = 2, y = 1
- Find f'(x) for the following functions. (a) f(x) = \sin^4(4x^5) (b) f(x) = g^n(\tan(x^2)), where g is a differentiable function and n is a constant.
- Find a function f such that |f| is differentiable, but f is not.
- Find the value of a that makes the following function differentiable for all x-values. g(x)={ ax,&{if}&x 0x^2-9x,& {if}&xgeq 0.
- Let f(x)= lrl x^2&if &xleq 2, mx+b&if &x 2. . Find the values of m and b that make f differentiable everywhere.
- Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and g(x) = f^(-1)(x) for all x. What is the value g'(3)? (A) -1/2 (B) 1/8 (C) 1/6 (D) 1/3