# Suppose that f is a differentiable function with f_x (8,0) = 8 and f_y (8, 0) = 7. Let w(u, v) =...

## Question:

Suppose that {eq}f {/eq} is a differentiable function with {eq}f_x (8,0) = 8 {/eq} and {eq}f_y (8, 0) = 7 {/eq}.

Let {eq}\displaystyle w(u, v) = f (x(u,\ v),\ y(u,\ v)) {/eq} where {eq}x = 8 \cos u + 2 \sin v {/eq} and {eq}y = 8 \cos u \sin v {/eq}. Find {eq}w_v (0,\ 0) {/eq}.

## Chain Rule for Derivatives:

One of the most important facet in mathematics is the way how mathematicians generalize common concepts so as to apply known findings to more complex problems. In this exxample, we shall illustrate how to use the generalization of chain rule to evaluate a partial derivative of a given function. In particular, for a function {eq}f(x(t),y(t)) {/eq}

one can solve the derivative of *f* with respect to *t* as

{eq}\partial_tf(x(t),y(t)) = \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t}. {/eq}

## Answer and Explanation: 1

Become a Study.com member to unlock this answer! Create your account

View this answerFor the function {eq}\displaystyle w(u, v) = f (x(u,\ v),\ y(u,\ v)) {/eq} where {eq}x = 8 \cos u + 2 \sin v {/eq} and {eq}y = 8 \cos u \sin...

See full answer below.

#### Ask a question

Our experts can answer your tough homework and study questions.

Ask a question Ask a question#### Search Answers

#### Learn more about this topic:

from

Chapter 14 / Lesson 4This lesson defines the chain rule. It goes on to explore the chain rule with partial derivatives and integrals of partial derivatives.

#### Related to this Question

- Suppose that f(x) and g(x) are differentiable functions such that f(1) = 2, f'(1) = 4, g(1)=5,\space \text{and} g' (1)= 3. Find h' (1) when h(x)=\frac{f(x)}{g(x)}.
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 2, f '(1) = -1, g(1) = -2 , and g'(1)=3 . Find h'(1). h(x) = ( x^2 + 8 ) g(x)
- Let f be a differentiable function. If h (x) = (1 + f (3x))^2, find h' (x).
- Suppose that f(x) and g(x) are differentiable such that f(2) = 6, f '(2) = 4, g(2) = 7, and g '(2) = 1. Find h '(2) when h(x) = f(x) / g(x). h '(x) =
- Suppose f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2, and g'(1) = 3. Find the value of h'(1), where h(x) = (x f(x)) / (x + g(x)).
- Suppose f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2, and g'(1) = 3. Find the value of h'(1). h(x) = (x^2 + 4) g(x)
- Suppose that f and g are functions that are differentiable at X 1 and that f(1) 2, f (1) -1, g(1) -2, and g (1) 3. Find h 1). h(x) (x2 10)g(x) h(1)
- Suppose that f and g are functions that are differentiable at x = 1 and that f (1) = 2, f' (1) = -1, g(1) = -2, and g'(1) = 3. Find h' (1). h (x) = (x^2 + 9) g (x)
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 4, f '(1) = - 6, g(1) = - 4, and g'(1) = 2. Find h'(1). h(x) = (f(x) g(x)) / (f(x) - g(x))
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 4, f '(1) = -4, g(1) = -4, and g'(1) = 4. Find h'(1). h(x) = f(x)g(x) / (f(x) - g(x))
- Suppose that f and g are functions that are differentiable at x = 1 and that f (1) = 2, f' (1) = -1, g (1) = -2, and g' (1) = 3. Find h' (1). h (x) = (x^2 + 7) g (x).
- Assume x and y are both differentiable functions of t and 3x^yy = 30 . Find \frac{dy}{dt} if \frac{dx}{dt} = 6 and x=1 .
- Suppose y = f(x) is differentiable function of x that satisfies the equation x^2y+y^2 = x^3. Find dy/dx implicitly
- Assume that x and y are differentiable functions of t. For the following, find \frac{dx}{dt} given that x = 3, y = 9, and \frac{dy}{dt} = 2. y^2 = 2xy + 27
- Suppose f is differentiable on R. Let F(x) = f(e^x) and G(x) = e^f(x). Find expressions for (a) F'(x) and (b) G'(x).
- Assume that f(x) and g(x) are differentiable for all x. Let h(x) = 2f(x) + \frac{g(x)}{7}, find h'(x).
- Assume that f(x) and g(x) are differentiable for all x. Let \displaystyle h(x) =\frac{f(x)g(x)}{5}, find h'(x). h'(x) = _____
- (a) Suppose that f and g are function that are differentiable at x = 1 and that f (1) = 4, f' (1) = -6, g (1) = -4, and g' (1) = 2. Find h'(1). h (x) = {f (x) g (x)} / {f (x) - g (x)}. (b) Find the de
- Suppose f \text{ and } g are functions that are differentiable at x = 1 and that f(1) = 2, \ f (1) = 1, \ g(1) = 2, \text{ and } g (1) = 3 . Find the value of h (1) , where h(x) = (x^2 + 11) g(x) .
- Suppose f and g are functions that are differentiable at x = 2 and that f' (2) = 1, f (2) = 3, g' (2) = -1 and g (2) = 2. Then find the value of h' (2) if h (x) = x. f (x).
- Given that s^2 = x^2 + y^2, where x and y and s are differentiable function of t, find \frac{ds}{dt} when s = 20, x = 15, and \frac{dy}{dt} = 4 and \frac{dx}{dt} = 5.
- Suppose that x and y are both differentiable functions of t and are related by the equation y = x^2 + 3. Find frac{dy}{dt} , given that frac{dx}{dt} = 2 when x = 1.
- Suppose x, y, and s are differentiable functions of t that are related by the equation s^2 = 3x + y^2. If dx/dt = 2 and dy/dt = 4, then find ds/dt when x = 8 and y = 5.
- Suppose u and v are differentiable functions of x and that u(0) = 5, u'(0) = -3, v(0) = -1, v'(0) = 2. Find the value of d(7v - 2u)/dx at x = 1.
- Show that f ( x ) = { x 2 sin ( 1 x ) , i f x 0 0 , i f x = 0 is differentiable at x = 0 and find f ( 0 )
- Assume that x and y are differentiable functions of t . Find \frac{\text{d}y}{\text{d}t}(4) using the given values: xy=x+4,\ \frac{\text{d}x}{\text{d}t}(4)= 5 .
- Let f(x, y, z) be a given differentiable function and define a new function g(x, y, z) = f(yz, zx, xy). Suppose that f_x(1, 1, 1) = 1, f_y(1, 1, 1) = 2, f_z(1, 1, 1) = 3. Find the following.g_x
- Assume that (f/g) (x) = x^2 + 2x, where f and g are differentiable functions such that f (2) = 2 and f' (2)= 3. Find g' (2).
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 1, \; f'(1) = -3, \; g(1) = 2, and g'(1) = 5. If h(x)=f(x)g(x), find h'(1).
- Show how to find all values at which a function is differentiable.
- Let f(x) = (2 - |x - 4|) / x. Find all values of x where f is not differentiable.
- Find A and B given that the function, f(x) is differentiable at x=1. f(x)= \begin{cases} x^2-5 & x<1 \\ Ax^2+Bx & x \geq1 \end {cases}
- Assuming that this function is differentiable, solve y = \frac{1 + xf(x)}{\sqrt {x.
- Suppose f is differentiable on R. Let F(x) = f(ex) and G(x) = ef(x). Find expressions for (a) F (x) and (b) G (x)
- Assume that x and y are both differentiable functions of the required value of dy/dt and dx/dt. xy=8 Find dx/dt, when x=1, given that dy/dt=-7.
- Assume that x and y are both differentiable functions of the required value of dy/dt and dx/dt. xy=8 Find dy/dt, when x=6, given that dx/dt=12.
- Suppose f ? 1 is the inverse function of a differentiable function f and f ( 4 ) = 5 , f ? ( 4 ) = 2 3 . Find ( f ? 1 ) ? ( 5 ) .
- Suppose g is the inverse function of a differentiable function g and G(x) = \dfrac{1}{ g(x)} . If f(3) = 2 \enspace and \enspace f'(3) = \frac{1 }{9} , find G''(2)
- Suppose g is the inverse function of a differentiable function f and G(x) = \frac{1}{g(x)} . Given f(2)=3, f'(2) =1/4 , find G'(3)
- Suppose that f(x) = - x^3 - 6 x + 1 is differentiable and has an inverse and f(2) = - 19. Find (f - 1)'(- 19).
- Find: Suppose f is a differentiable function such that 1. f(g(x)) = x and f (x) = 1 + \left [ f(x) \right ] 2. Show that g (x) = \frac{1}{(1 + x^2)}.
- Find the values of m and b that make the following function differentiable; f(x) = \left\{ {\matrix{ x^3 \cr {mx + b} \cr } } \right.~~\matrix{ {x \le 1} \cr {x greater than 1} \cr }
- A. Suppose \int\limits_0^1 f(t) dt = 3. Find \int\limits_1^{1.5} f(3 - 2t) dt. B. Let f be twice differentiable with f(0) = 6, f(1) = 5, and f'(1) = 2. Find \int\limits_0^1 xf''(x) dx.
- Where is the function not differentiable? a) f(x) = (x^2 - 4)^{1 / 3}. b) f(x) = 3 x^2 - 5 x.
- Where is the function f(x) = |x| differentiable?
- Suppose f(x) is a differentiable function with f(2) = 4 and f'(2) = 2. Compute the following: a. g'(2) = where g(x) = (x + 3)f(x). b. h'(2) = where h(x) = 3^x(x^2 + 1)f(x)
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{0.20in} & \hfill\underline{\text{Find\hfill & \hspace{0.20
- 1. Assume that x and y are both differentiable functions of t, find the required values of dy/dt and dx/dt. xy = 4 (a) Find dy/dt, when x = 2, given that dx/dt = 10. (b) Find dx/dt, when x = 1, given
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{.20in} & \hfill\underline{\text{Find\hfill & \hspace{.20in
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{0.19in} & \hfill\underline{\text{Find\hfill & \hspace{0.19
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{.19in} & \hfill\underline{\text{Find\hfill & \hspace{.19in
- Suppose f is a differentiable function of x and y, and g(r,s)=f(4r-s, \ s^2-7r). Calculate g_r(4,1) and g_s(4,1) using the given table of values. \displaystyle \begin{array}{|c|c|c|c|c|} \hline
- Suppose f and g are functions that are differentiable at x= 1 and that f(1)= 7, f '(1)= 9, g(1)= 6, and g '(1)= 2. Find the value of h '(1). h(x)= \frac{f(x)g(x)}{f(x) - g(x)}
- Suppose f is a differentiable function of x and y, and g(r,s)=f(5r-s,s^{2}-6r) . Use the table of values below to calculate g_{r} (9,4) and g_{s} (9,4)g_{r}(9,4)= g_{s}(9,4)=
- Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. xy = 4 a) Find dy/dt, given x = 8 and dx/dt = 11.(b) Find dx/dt, given x = 1 and dy/dt=-8.
- Assume that x and y are both differentiable functions of t , and find the required values of d y d t and d x d t . y = 2 ( x 2 ? 3 x ) (a) Find d y d t when x = 3 , given that d x d t = 5
- Assume that x and y are both differentiable functions of t and find the required values of \frac{dy}{dt} and \frac{dx}{dt} y=\sqrt x (a) Find \frac{dx}{dt}, given x = 25 and \frac{dy}{dt} = 3. (
- Assume that x and y are both differentiable functions of t and find the required values of \frac{dy}{dt} and \frac{dx}{dt}. (a) Find \frac{dy}{dt} when x = 5, given that \frac{dx}{dt} = 3. \frac{dy}
- Suppose g is an inverse function of a differentiable function f and G(x) = \displaystyle \frac{1}{g(x)}. If f(5) = 4 and f'(5) = \displaystyle \frac{1}{25}, find G'(4).
- Suppose f -1 is the inverse function of a differentiable function f and f(4) = 2, f'(4) = 7/8. Find (f -1)'(2).
- If f(x) is a function differentiable at x = 1 and f(1) = 1/8. What is the value of f(x) - f(1)
- Suppose that f(x) \text{ and } g(x) are differentiable functions such that f(6)=2, \ f (6)=3, \ g(6)=8, \text{ and } g (6)=9 . Find \frac{\text{d{\text{d}x} \left(f(x)g(x)\right) \text{ at } x=6 .
- Find a function f such that |f| is differentiable, but f is not.
- Suppose h and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2 and g'(1) = 3. Find the value of h'(1). h(x) = \frac{x f(x)}{x + g(x)}. The answer should be
- The function f is differentiable and \int_0^x (4f(t)+5t)dt=\sin (x). Determine the value of f'(\frac{\pi}{6}). a. \frac{5}{4} b. \frac{\sqrt 3}{8}-\frac{5\pi}{24} c. 0 d. \frac{\sqrt 3}{2} e. -\frac{11}{8}
- Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and g(x) = f^(-1)(x) for all x. What is the value g'(3)? (A) -1/2 (B) 1/8 (C) 1/6 (D) 1/3
- Assume that x and y are both differentiable functions of t and find the required values of d y d t , d x d t , x y = 4. a) find d y d t , given that x=2 and d x d t = 14. , b) find d x d t given x=1 and d y d t = 6
- Assume that x and y are both differentiable functions of t and find the required values of dy / dt and dx / dt. xy = 8. (a) Find dy / dt, given x = 6 and dx / dt = 13. (b) Find dx / dt, given x = 1 a
- Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. xy = 2 a. Find dy/dt, when x = 4, given that dx/dt = 13. b. Find dx/dt, when x = 1, given that dy/dt = -9.
- 1. Assume that x and y are both differentiable functions of t and find the required values of d y d t and d x d t . (a) Find d y d t when x = 5, given that d x d t = 5. (b) Find d x d t whe
- Given x^2 + y^2 = 225. Assume that x and y are both differentiable functions of t and find the required values of dx/dt. Find dy/dt, given x = 9, y = 12, and dx/dt = 8. Find dx/dt, given x = 12, y = 9, and dy/dt = 4.
- Find f'(x) for the following functions. (a) f(x) = \sin^4(4x^5) (b) f(x) = g^n(\tan(x^2)), where g is a differentiable function and n is a constant.
- Suppose f is a differentiable function such that (1) f(x + y) = f(x) + f(y) + 2xy for all real numbers x and y and (2) \lim_{h \to 0} \frac{f(h)}{h} = 7. Determine f(0) and find the expression for f(x). (Hint: find f'(x).)
- Is the function f(x) = x + |x| - 1 differentiable at x = 0?
- If z = f(x, y), where f is differentiable, and x = g(t) , y = h(t) g(4) = 5 , h(4) = -5 g'(4) = -5, h'(4) = -1 { f_x (5, -5) = 1, f_y (5, -5) = 6 } find dz/dt when t = 4. { \frac{dz}{dt} =
- Find the value of a that makes the following function differentiable for all x-values. g(x)={ ax,&{if}&x 0x^2-9x,& {if}&xgeq 0.
- Suppose f and g are differentiable functions with the following values x & f(x) & f'(x) & g(x) & g'(x) 1 & 3 & -5 & 2 & -1 Find the derivatives of the following at x = 1 : (a) f(x) - 2g(x)
- Suppose f is a differentiable function such that f(g(x)) = x and f'(x) = 1 + [f(x)]2. Show that g'(x) = 1/(1 + x2).
- Is the function differentiable at x=2?
- Assuming x and y are differentiable functions of t, find the indicated quantity. (a) x^2 + x y? y^3 = 7, x = 3, y = 2, \frac{dy}{dt} = -2, find \frac{dx}{dt}. (b) x+ e ^{y-1} +ln(y) = 3, x = 2, y = 1
- Let f be a differentiable function so that f'(x) = x\sqrt{f(x)} and f(3) = 25. Find f''(3).
- Let f(x, y) be a differentiable function. Suppose that f(t, t^2) = 1 for all t, and that f_x(2, 4) = 2. Find f_y(2, 4).
- Suppose f(x) is differentiable function and if f(x)y + f(y)x = 10, find f'(x).
- Suppose {f^{ - 1 is the inverse function of a differentiable function f and f\left( 4 \right) = 5, \ f'\left( 4 \right) = 1/2, \ f'\left( 5 \right) = 1/3. Find \left( f^{ - 1} \right)'\left( 5 \right).
- Suppose that f(x) \enspace and \enspace g(x) are differentiable functions such that f(1) =2, f'(1) = 5, g(1) =8 , g'(1) =4 . Find h'(1) when h(x) = \frac{f(x)}{g(x)}
- Suppose functions f and g are differentiable functions, where f(-3) = 2, f'(-3) = 6, g(-3) = 3, and g'(-3) = 4. If H(x) = (x + g(x) )/ f(x) , then H' (-3) = [{Blank}] A) 3/2 B) 0 C) 1 D) 5/2 E) -1/2
- Where is the function f(x) = Sqrt(4x+1) differentiable?
- Assume that x and y are both differentiable functions of the required value of dy/dt and dx/dt. y=square root of{x} Find dx/dt, when x=81, given that dy/dt=3.
- Assume that x and y are both differentiable functions of the required value of dy/dt and dx/dt. y=square root of{x} Find dy/dt, when x=9, given that dx/dt=3.
- If g is the inverse function of a differentiable function f (x) such that f (-1) = 8, f (1) = 6, f' (-1) = 12, and f' (1) = 3. Find g' (8).
- Suppose f is a differentiable function over R. Find f(8) given that 7+ 4 \sin (\pi x) + x\int_{1}^{x^2} f (xt) dt = -7\cos (\pi x).
- Find h (x) where f(x) is an unspecified differentiable function. h(x) = f(x) / x^{15}
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -8, g(1) = -2, and g'(1) = -4. Find h'(1). h(x) = f(x)g(x)/f(x) - g(x) h'(1) = ??
- Suppose g is a one-to-one differentiable function with g 4 = 6 and g 4 = fraction{2}{5}. Let g^{-1} be the inverse function of g. Find the value of g^{-1}6.
- The differentiable function f satisfies f(-2) = 0 , f'(-2) = 0, f(0) = 4, f'(0) = -2, f(3) = 1, and f'(3) =-3. Evaluate \int_{-2}^{3}4(f(z)+1)^{2}f'(z)dz.
- Let f be a differentiable function such that f(g(x)) = x and f'(x) = 1 + [f(x)]2. Show that g'(x) = 1/(1 + x2).
- If f is a differentiable function satisfying f(x) + x^2 [f(x)]^3 = 10, and if f(1) = 2, find f'(1).
- Given x^2 + y^2 = 169 , assume that x \enspace and \enspace y are both differentiable functions of t , find \frac{\mathrm{d} x}{\mathrm{d} t} . (a) Find \frac{\mathrm{d} y}{\mathrm{d} t} ,