# Suppose a production function is q = K^(1/2)L^(1/3) and in the short run capital (K) is fixed at...

## Question:

Suppose a production function is {eq}q = K^{1/2}L^{1/3}
{/eq} and in the short run capital ({eq}K
{/eq}) is fixed at **100**. If the wage is **$10** and the rental rate on capital is **$20**, the short run marginal cost is _____.

a. {eq}1000 + q^3 {/eq}

b. {eq}\frac{3q^2}{100} {/eq}

c. {eq}q^3 {/eq}

d. {eq}2q^3 {/eq}

## Marginal Cost:

The marginal cost is equal to the change in the total cost divided by the change in quantity, which is also equal to the slope of the total cost equation.

## Answer and Explanation: 1

Become a Study.com member to unlock this answer! Create your account

View this answerSuppose a production function is {eq}q = K^{1/2}L^{1/3}
{/eq} and in the short run capital ({eq}K
{/eq}) is fixed at **100**. If the wage is **$10** and the...

See full answer below.

#### Ask a question

Our experts can answer your tough homework and study questions.

Ask a question Ask a question#### Search Answers

#### Learn more about this topic:

from

Chapter 3 / Lesson 12What is marginal cost? Learn how to calculate marginal cost with the marginal cost formula. See the definition, behavior, and marginal cost examples.

#### Related to this Question

- Suppose a production function is q = K^(1/2)L^(1/3) and in the short run capital (K) is fixed at 100. If the wage is $10 and the rental rate on capital is $20, the short-run average cost is _____
- Suppose a production function is q = K^(1/2) L^(1/3) and in the short run capital K is fixed at 100. If the wage is $10 and the rental rate on capital is $20, the fixed cost is _____.
- Suppose there is a fixed amount of capital K=20. Find a short run cost function CFK(q) when the wage is 6 and the rental rate of capital is 3 for a firm whose production function is F(K,L)=3^3/5L^2/5
- A firm has a production function q = 0.25KL^{0.5}, the rental rate of capital is $100, and the wage rate is $25. In the short-run, capital is fixed at 100 units. a. Write the firm's. cost as a functi
- Suppose that a firm's production function is Q = min{K, L}. Currently, the wage is w = 8 and the cost of capital is r = 8. (a) What is the minimum cost method of producing Q = 40 units of
- A firm has a production function q = 0.25KL^(0.5), the rental rate of capital is $100, and the wage rate is $25. In the short-run, capital is fixed at 100 units. a. What is the firm's short-run produc
- Suppose a firm has a production function given by Q = K^{0.5}L^{0.5}. The firm pays a wage of $64 per unit and pays a rental rate of the capital of $5 per unit. K = 256 in the short run. The maximum level of profit this firm could make in the short run if
- Deriving short-run and long-run cost functions: Suppose a firm's production function is: y = K2L 2 The wage rate is w = 2 and the rental rate is r = 4. If the firm's capital is fixed at \bar{K} = 10 i
- Suppose a firm's production function is given by Q = 2L + K. Also, the price of Labor, w = 10, and the price of Capital, r = 4. If the firm minimizes the cost of production, how much will it cost the
- A firm has a production function, q = L^{0.6}K^{0.4}. It wants to minimize cost for a given production q. The wage rate and rental rate on capital are w and r, respectively. a. Write the Lagrangian ex
- A firm has a production function,q=A LaK1-a, where 0 is less than a is less than 1. It wants to minimize cost for a given production q. The wage rate and rental rate on capital are wand r, respectivel
- Suppose in the short run a firm's production function is given by Q = L^(1/2) x K^(1/2), and that K is fixed at K = 9. If the price of Labor, w = $12 per unit of Labor, what is the firm's Marginal Cost of production when the firm is producing 48 units of
- Suppose a firm's production function is given by the equation Q = 12L^.5K^.5 . This firm operates in the short run where capital (K) is fixed at a quantity of 16. If the price per unit of the good is $1.9 and labor costs $10 per unit. Then the profit-maxi
- Suppose a firm's production function is Q = 2K0.5L0.5. If the level of capital is fixed at 25 units, then what is the firm's short-run production function?
- Suppose a firm with a production function given by Q = K0.25L0.75 spends $6000. The firm pays a wage of $30 per units and pays a rental rate of capital of $10 per unit. The maximum output that can be
- Suppose that a production function of a firm is given by Q= min{2L,K}, where Q denotes output, K capital, and L labor. Currently the wage is w=$10, and the rental rate of capital is r=$15. a. What is the cost and method of producing Q=20 units of capital
- Assume a firm has a production function Q = 2 S L 5 K 5 and the price of labor is $3 and the price of capital is $12. a) What is the minimum cost of producing 1,250 units of output? b) Now show t
- Assume a firm has a production function Q = 25 L 5 K 5 and the price of labor is $3 and the price of capital is $12. a) What is the minimum cost of producing 1,250 units of output? b) Now show tha
- Suppose a firm with a production function given by Q = 30 K^{0.5}L^{0.5} produces 1,500 units of output. The firm pays a wage of $40 per unit and pays a rental rate of capital of $640 per unit. How
- Suppose that a firm's production function is q = 5x^{0.5} in the short run, where there are fixed costs of $1,000, and x is the variable input whose cost is$1250 per unit. The total cost of producing a level of output q is C(q) = 1,000 + \frac{1250q^2}{25
- Suppose that a firm has a production function given by q = 10L0.5K0.6. The firm has 10 units of capital in the short run. Which of the following will describe the marginal product of labor (MPL) for this production function? a. increasing marginal returns
- Suppose that a firm's production function is Q = 2KL. The rental rate of capital is 5$ per machine (per hour) and the hourly wage is 8$. Assume that capital is fixed at 5. Graph FC, V C, TC on one gr
- A firm's product function is Q = 5L^{0.5}K^{0.5}. Labor costs $40 per unit and capital costs $10 per unit. K = 16 in the short run. Suppose the production of a firm is Q = 5 + 2K + L. Which of the following statements is correct? A. The firm's production
- Suppose in the short run a firm's production function is given by Q = L^{1/2}K^{1/2}, and that K is fixed at K = 36. If the price of Labor, w = $12 per unit of Labor, what is the firm's marginal cost of production when the firm is producing 48 units of ou
- Suppose in the short run a firm's production function is given by Q = L1/2K1/2, and K is fixed at K = 36. If the price of labor, w = $12 per unit of labor, what is the firm's marginal cost of production when the firm is producing 48 units of output?
- A firm's product function is Q = 5L^{0.5}K^{0.5}. Labor costs $40 per unit and capital costs $10 per unit. K = 16 in the short run. Suppose the production function of a firm is Q = 5 + 2K + L. Which of the following statements is correct? A. The firm's LA
- Consider the production function Q = K^{0.5}L^{1.5} where K is capital and L is labor. Suppose capital is fixed at 625 in the short-run. What is the short-run total product?
- Suppose a firm with a production function Q = KL is producing 125 units of output by using 5 workers (L) and 25 units of capital (K). The wage rate (W) per worker is $10 and the rental rate (price) pe
- A firm's production function is given by Q = 2L - L^2 + K. The price of labor is w > 0 and the price of capital is r > 0. Assuming the firm uses both labor and capital, derive the long-run total cost function.
- Suppose that a firm had a production function given by q = L0.25K0.75. The wage rate (w) is $5 and the rental rate (r) is $10. Calculate the amount of labor the firm would hire when it produces 400 units of output in a cost-minimizing way. (Round to the n
- Suppose we are given a profit function Q = 12L0.5K0.5. The price of labor (L) is $6 per unit and the price of capital (K) is $6 per unit. The firm is interested in the optimal mix of inputs to minimize the cost of producing any level of output Q. In the o
- A firm's production function is given by Q = 2L - L^2 + K. The price of labor is w > 0 and the price of capital is r > 0. Assuming the firm uses both labor and capital. Suppose w = 1 and r = 1. At what output level is K = 3 a cost-minimizing choice of cap
- Consider a firm with the production function f(L,K) = L^{0.5}K^{0.5}. The wage rate and rental rate on capital are w and r, respectively. a. Use the Lagrangian for cost minimization to do derive the long-run cost function for this firm. b. Suppose the
- Suppose a firm's production function is Q = 4K0.5 L0.5. Its level of capital is fixed at 4 units, the price of labor is PL = $16 per unit, and the price of capital is PK = $20 per unit. The firms aver
- Suppose that a firm's production function is q = 10L1/2K1/2. The cost of a unit of labor is $20 and the cost of a unit of capital is $80. a. Derive the long-run total cost curve function TC(q). b. The firm is currently producing 100 units of output. Find
- Suppose a firm has the production function f(k, l) = kl. The wage is given by w = 5 and the rental rate of capital is given by v = 10. a. In order to produce 800 units of output, what is the cost-minimizing level of k? What is the cost-minimizing level of
- 1. The production function for your firm is Q = 10 Min {2K, 3L}. In competitive input markets you must offer a wage rate w = 150 and a rental rate r = 200. Your minimum cost per unit of producing 600
- Suppose that a firm's production function is q = 10L^{0.5}K^{0.5} . The cost of a unit of labor is $10/hour and the cost of capital is $40/hour, and the firm is currently producing q=1000 units
- Consider a firm with the production function, q=(K^1/2+L^1/2)^2. In the short-run, the level of capital is fixed. a) Determine the equations for MPL and APL. b) Solve for the short-run cost function (
- Suppose the production function for a firm is given by q = 5L0.5K0.25. In the short run, the firm has 16 units of capital. Find the marginal product of labor (MPL). Round to 2 decimal places.
- Suppose that the firm's production function is given by Q = 10K(L)^1/3. The firm's capital is fixed at K. What amount of labor will the firm hire to solve its short-run cost-minimization problem?
- A cost minimizing firm has the following short run production function: Q = f (L, K) = 72 L + 5 L^2 - 0.2 L^3. a) Briefly explain why this is a short run production function. b) At what level of employment would diminishing returns set in for the variable
- Suppose a firm has a production function given by Q = L1/2K1/2. The firm can purchase labor, L, at a price w = 8, and capital, K, at a price of r = 2. a) What is the firm's total cost function, TC(Q)? b) What is the firm's marginal cost of production?
- A firm's product function is Q = 5L^{0.5}K^{0.5}. Labor costs $40 per unit and capital costs $10 per unit. K = 16 in the short run. Determine the firm's short-run cost function. \text{A.}\; C = 160 + 2Q^2\\ \text{B.}\; C = 640 + Q^2/20\\ \text{C.}\; C = 1
- Suppose the production function is q = 12L0.25K0.75. Determine the long-run capital-to-labor ratio \frac{K}{L} if the cost of a unit of capital ''(r)'' is three times the cost of a unit of labor ''(w)''.
- Suppose the production function is q = 12 L^{0.25} K^{0.75}. Determine the long-run capital-to-labor ratio (K/L) if the cost a unit of capital (r) is three times the cost of a unit of labor (w).
- Suppose we are given a profit function Q = 12L^.5K^.5. The price of labor is $6 per unit and the price of capital (K) is $7 per unit. The firm is interested in the optimal mix of inputs to minimize the cost of producing any level of output Q. In the optim
- A firm has the production function q = 0.2LK + 5L^2K - 0.1L^3K. Assume that K is fixed at 10 in the short run. A. What is the short-run production function? B. What is the marginal product of labor and the average product of labor in the short run? C. Whe
- A firm production function is given by q = f(k,l) = K-1/2. w = $20, v = $5. Consider a short-run situation where the level of capital is fixed at k1 = 10. At p = $12, in the short-run, what is the q
- A firm's production function is given by Q = 2L - L^2 + K. The price of labor is w > 0 and the price of capital is r > 0. Assuming the firm uses both labor and capital. Suppose w = 1 and r = 1. At what output level is L = 0.5 a cost-minimizing choice of l
- A cost-minimizing firm has the following short-run production function Q = f(L, K)=72L + 5L^2 - 0.2L^3 (a) Briefly explain why this is a short-run production function. (b) At what level of employment would be diminishing returns set in for the variabl
- A firm's production function is Q = min(L, 4K). The price of labor is w > 0 and the price of capital is r > 0. Suppose capital is fixed at K = 2 in the short run. Derive the short-run total cost function. Draw the short-run expansion path. Label your gr
- Suppose a firm's production function is given by Q = L1/2*K1/2. The Marginal Product of Labor and the Marginal Product of Capital are given by: MPL = (K^1/2)/(2L^1/2), and MPK =(L^1/2)/(2K^1/2). a) S
- Suppose a firm with a production function given by Q=4K^0.25L^0.75 produces 100 units of output. The firm pays a wage of $30 per units and pays a rental rate of capital $10 per unit. The minimum cost
- 1. Suppose that a firm's production function is q = 10L^{1/2}K^{1/2}. The cost of a unit of labor is $20 and the cost of a unit of capital is $80.a. If the firm wishes to produce 100 units of output,
- Suppose a firms production function is Q = 2K0.5 L0.5. Its level of capital is fixed at 9 units, the price of labor is PL = $12 per unit, and the price of capital is PK = $10 per unit. The firms avera
- The production function of a company is given by the following expression: q (K;L) = 10K^{1/3} . L^{3/4} In short term there s only 9 units of capital (K = 9). The price per unit of capital is 8 and the price each unit of work is 5. Get the cost fun
- A firm's production function is q=5L^0.5K^0.5. The firm's capital is fixed at K=400 units, in the short run. The rental rate of a unit of capital is $9, and the wage rate is $100 in the short run. De
- Suppose the production function is y = 2K^{0.5}L^{0.5} and in the short-run K is fixed at K = 16. The market wage rate w=1 and price of capital r=4. The total costs C of a firm is: C = 4K + L. a. Find what is the short-run total cost function C (C as a fu
- Consider a firm with production function f(L,K)=3L1/3K2/3. Assume that capital is fixed at K=1. Assume also that the price of capital r=5 and the price of labor w=3. Then, the variable cost of producing q units is what?
- Suppose a firm's short-run production function is given by Q = 4L^{0.8}. If the production function is Q = L^{0.8} K^{0.2}, how many units of capital is it using?
- A firm's product function is Q = 5L^{0.5}K^{0.5}. Labor costs $40 per unit and capital costs $10 per unit. K = 16 in the short run. Derive the long-run cost function for the firm. A. C = 4q B. C = 17q C. C = 8q D. C = 10q
- Suppose you have a firm whose production function is given by Q=K^0.3L^0.7. Wages=3, Rental rates=6, Price of product = $10 a) In the short run, capital is fixed at 5. What is the optimal labor demand in the short run? b) What is the optimal ratio of c
- A firms production function is given be Q=f(L,K)=L^1/2K^1/2. The prices of labor (w) and of capital (r) are $2.5/unit and $5/unit, respectively. Suppose that the firm has a capital employment of 25 un
- Suppose a firms production function is Q = 0.2K0.5 L0.5. Its level of capital is fixed at 25 units, the price of labor is PL = $8 per unit, and the price of capital is PK = $4 per unit. The firms aver
- Suppose a firm with a production function given by Q = 30K^0.5L^0.5 produces 3,000 units of output. The firm pays a wage of $40 per unit and pays a rental rate of capital of $640 per unit. How many units of labor and capital should the firm employ to mini
- Suppose a firm with a production function given by Q = 30 K^{0.5}L^{0.5} produces 1,500 units of output. The firm pays a wage of $40 per unit and pays a rental rate of capital of $640 per unit. How many units of labor and capital should the firm employ to
- Suppose that production for good X is characterized by the following production function, Q = K0.5L0.5, where K is the fixed input in the short run. If the per-unit rental rate of capital, r, is $15 a
- Suppose the production function for a competitive firm is Q = K^.75L^.25. The firm sells its output at a price of $32 and can hire labor at a wage rate of $2. Capital is fixed at 1 unit. a. What is the profit-maximizing quantity of labor? b. If the price
- Suppose capital and labor are perfect substitutes resulting in a production function of q = K + L. That is, the isoquants are straight lines with a slope of -1. Derive the long-run total cost function TC = C(q) when the wage rate is w and the rental rate
- Suppose that you are given the following cost function C(w,r,Q) = 2w^1/2 r^1/2 Q^3/2 where w is the wage rate for labor, r is the rental rate of capital and q is the output level. (a) Derive the marg
- Suppose a firm's short-run production function is given by Q = 3 sqrt(L) , where L represents the number of hours of labor employed. The firm has a sunk cost of $500 and the wage rate is $18 per hour. What is the firm's short-run cost function?
- Suppose a firm with a production function given by Q = K^{0.25}L^{0.75} produces 1,500 units of output. The firm pays a wage of $50 per unit and pays a rental rate of the capital of $50 per unit. To produce 1,500 units of output, the firm should use: a. 1
- Suppose a firm's production function is given by Q = LK^2. Suppose the firm is producing 16 units of output by using 1 units of Labor and 4 units of Capital. What is the slope of the isoquant at this
- Consider a firm with production function f(L,K)=3L+8K. Assume that capital is fixed at K=12. Assume also that the price of capital r=10 and the price of labor w=3. Then, the average cost of producing q units is what?
- A firm's product function is Q = 5L^{0.5}K^{0.5}. Labor costs $40 per unit and capital costs $10 per unit. K = 16 in the short run. Determine the level of output that minimizes SAC for the firm. A. 40 B. 80 C. 113 D. 135
- The long-run production function for a firm's product is given by q = f(K; L) = 5 K L. The price of capital is $10 and the price of labor is $15. a. Suppose the firm wishes to produce an output of 500. List 5 combinations of capital and labor that the fi
- Suppose a production function is given by Q = 4K + 3L. What is the marginal product of capital when 10 units of capital and 10 units of labor are employed?
- Suppose the production function is given by Q = 3K + 4L. What is the marginal product of capital when 5 units of capital and 10 units of labor are employed?
- Consider the following production function: Q = 100K^(0.4)L^(0.6). The wage rate is $12/hr., and the rental rate on capital is $8/hr. A. Compute the minimum cost of producing 200 units of output.
- Suppose a firm has a production function given by Q = L^\frac{1}{2}K^\frac{1}{2}. Therefore, MP_L = \dfrac{K^\frac{1}{2{2L^\frac{1}{2 and MP_K = \dfrac{L^\frac{1}{2{2K^\frac{1}{2 The firm can purchase labor, L at a price w = 8, and capital, K at
- Consider the linear production function q=f(K,L)=2L+K . a. What is the short-run production function given that capital is fixed at K=100? b. What is the marginal product of labor?
- Suppose that the production function is Q = L^{2 / 3} K^{1 / 2}. a. What is the average product of labour, holding capital fixed? b. What is the marginal product of labour? c. Determine whether the production function exhibits diminishing marginal product
- A firm produces output according to a production function: Q = F(K,L) = min {3K,6L}, where K is capital, and L is labor. a) How much output is produced when K = 2 and L = 3? b) If the wage rate is $55
- Suppose a firm's short-run production function is given by Q = F(L) = 10L. L stands for number of workers. If the wage rate is $15 and the firm has sunk costs of $1000 what is the firm's total cost fu
- A firm is producing output Q using a mix of capital K and labor L. The production function is given by . A unit of capital costs $3 and a unit of labor costs $9. The firm wants to minimize the total c
- Consider a firm with the production function f(L,K)=L^(0.5)k^(0.5). The wage rate and rental rate on capital are w and r, respectively. a) Use the Lagrangian to derive the long-run cost function for t
- Consider a Cobb-Douglas production function: f(L,K)=0.5K^0.5L^0.5. Using this production function, solve a short-run profit maximization problem for a fixed capital stock K=4, output price p=8, wage rate w=2, and capital rental rate r=4.
- Suppose that a firm faces the production function Q = 3K^{0.2}L^{0.3}, where the cost of labor and capital are w and r. What are the demand curves for labor and capital?
- Consider the following production function: Q = 10KL. If w = 25, r = 75, and c = 1200, find the minimum cost combination of capital and labor to produce a given level of output.
- What is the cost-minimizing level of capital that the firm must use to produce a target level of output, Q = 1600? A firm's production process uses labor, L, and capital, K, and materials, M, to produce an output, Q according to the function Q= KLM, where
- A firm production function is given by q = f(k,l) = k�l. w = $20, v = $5. Consider a short-run situation where the level of capital is fixed at k1 = 10. The short-run total costs for producing q0 = 10
- Suppose, in the long run, for a firm, the marginal product of labor is 100, the marginal product of capital is 120. The wage rate (per unit of labor) is W = 20, and the rental price (per unit of capital) is R = 24. Then which of the following is true? A.
- Suppose that capital costs $10 per unit and labour costs $4 per unit. If the marginal product of capital is 50 and the marginal product of labour is 50, then in the long run the firm should in order to minimize its costs of producing its output. A) emplo
- Suppose in the short run, a firm is able to adjust the amount of labor (L) while the amount of capital (K*) is fixed. The production function is: f(K,L) = K^1/3 L^1/3. The price of output is 'p,' the
- If the production function is Q = K^(1/2) L^(1/2) and capital is fixed at 100 units, then the marginal product of labor (MPL) will be?
- Consider a firm with production function f(L,K)=3L1/3K2/3. Assume that capital is fixed at K=1. Assume also that the price of capital r=5 and the price of labor w=3. Then, the average fixed cost of producing q units is what?
- Consider a profit-maximising, price-taking firm that only uses capital as input at a cost of v per unit. Its production function is given by f(k) = 11 - \frac{1}{1 + k}. What is its cost function (whe
- Suppose a firm can use either capital (K) or labor (L) in a production process. The firms production function is given by Q = 5L + 15K. The price of capital is $20 per unit and the price of labor is $8 per unit. a. What is the firm's total cost function?
- A firm produces output with the production function F(K,L) = K^{1/2}L^{1/2}. The price of capital is p_K = 10 and the price of labor is p_L = 40. Find the cost-minimizing input bundle for producing Q = 50 in the long run.