Make a substitution to express the integrand as a rational function and then evaluate the...
Question:
Make a substitution to express the integrand as a rational function and then evaluate the integral. {eq}\int \frac{e^{2x}}{e^{2x}+3e^x+2}dx {/eq}
Partial Fraction Decomposition
To integrate the rational function {eq}f(x)=\frac{cx+d}{(x+a)(x+b)} {/eq} (we are assuming {eq}a\neq b {/eq}), we first need to decompose {eq}f(x) {/eq} into partial fractions
{eq}\displaystyle \frac{cx+d}{(x+a)(x+b)}=\frac{A}{x+a}+\frac{B}{x+b},\quad (\ast) {/eq}
where {eq}A {/eq} and {eq}B {/eq} are constants. To find {eq}A {/eq} and {eq}B {/eq}, we multiply both sides of {eq}(\ast) {/eq} by {eq}(x+a)(x+b) {/eq} and get
{eq}cx+d=A(x+b)+B(x+a)=(A+B)x+(Ab+Ba). {/eq}
Then, {eq}A {/eq} and {eq}B {/eq} can be found by solving the system
{eq}A+B=c,\quad Ab+Ba=d. {/eq}
Answer and Explanation: 1
Become a Study.com member to unlock this answer! Create your account
View this answerApplying the change of variable {eq}e^x=t {/eq}, we have {eq}e^xdx=dt {/eq}, so
{eq}\displaystyle \begin{align*} \int...
See full answer below.
Ask a question
Our experts can answer your tough homework and study questions.
Ask a question Ask a questionSearch Answers
Learn more about this topic:

from
Chapter 13 / Lesson 10Learn about integration by partial fractions. Explore how to make partial fractions and then how to integrate fractions. See examples of integrating fractions.
Related to this Question
- Make a substitution to express the integrand as a rational function and then evaluate the integral. \int \frac{\sqrt{1+\sqrt{x}{x}dx
- Make a substitution to express the integrand as a rational function and then evaluate the integral. \int \frac{x^3}{\sqrt[3]{x^2+1dx
- Make a substitution to express the integrand as a rational function and then evaluate the integral \int \frac{e^x}{(e^x-9)(e^{2x}+1} \, dx
- Make a substitution to express the integrand as a rational function and then evaluate the integral. \int \frac{dx}{x^2+x\sqrt{x
- Make a substitution to express the integrand as a rational function and then evaluate the integral. \int \frac{dx}{(1+\sqrt{x})^2}
- Make a substitution to express the integrand as a rational function and then evaluate the integral \int \frac{\cos x }{(\sin x)^2 + 9\sin x} \, dx
- Make a substitution to express the integrand as a rational function and then evaluate the integral. \int \frac{\textrm{cosh} \; t}{\textrm{sinh}^2t+\textrm{sinh}^4\;t}dt
- Make a substitution to express the integrand as a rational function and then evaluate the integral. \int \frac{x^3}{\sqrt[7]{x^2+1 \enspace dx
- Make a substitution to express the integrand as a rational function and then evaluate the integral \int \frac{x^3}{\sqrt[5]{x^2+5 \, dx
- Make a substitution to express the integrand as a rational function, then evaluate the integral. (a) \displaystyle \int \frac{\sqrt{1+\sqrt{x}{x} \ dx \quad \text{Hint: let } u = \sqrt{1+\sqrt{x (
- Make a substitution to express the integrand as a rational function and then evaluate the integral \int \frac{7\sec^2 t}{\tan^2 t + 11\tan t+18} \, dt
- Make a substitution to express the integrand as a rational function, and then evaluate the integral. (a) 81 25 x x 9 d x (b) 2 e 2 x e 2 x + 16 e x + 63 d x
- Make a substitution to express the integrand as a rational function and then evaluate the integral. \int_{1/3}^3 \frac{\sqrt{x{x^2 + x} \ dx
- Make a substitution to express the integrand as a rational function and then evaluate the integral. \int_{0}^{1} \frac{1}{1+\sqrt[3]{xdx
- Make a substitution to express the integrand as a rational function and then evaluate the integral. \int_4^{25} \dfrac{\sqrt x}{x - 100}\,dx
- Make a substitution to express the integrand as a rational function and then evaluate the integral. Integral of dx/(x*sqrt(x - 1)).
- Make a substitution to express the integral as a rational function and evaluate the integral. int frac{dx}{x+2\sqrt{(x-1)
- Make a substitution to express the integrand as a rational function and then evaluate the integral. inte^x (e^x-9)(e^2x +1) dx
- Make a substitution to express the integrand as a rational function and then evaluate the integral. Integral of (dx)/(x^2 + x*sqrt(x)).
- Make a substitution to express the integrand as a rational function and then evaluate dx x+2(sqrtx-1 ) .
- Make a substitution to express the integrant as a rational function and then evaluate the integral. \int \frac{e^{2x{e^{2x} + 3e^x + 2} dx
- Make a substitution to express the integral as a rational function and then evaluate the integral. Integral of (1)/(2*sqrt(x + 3) + x) dx.
- Use the substitution to transform the integrand into a rational function of t and then evaluate the integral. \displaystyle\int\frac{1}{3sin(x)-4cos(x)}dx
- Use the substitution to transform the integrand into a rational function of t and then evaluate the integral. \displaystyle\int_{\pi/3}^{\pi/2}\frac{1}{1+sin(x)-cos(x)}dx
- Make a substitution to express the integrand as a rational function and then evaluate the infinite integral of 3sec^2(t)/(tan^2(t) + 11 tan(t) + 28) dt. Remember to use ln(|u|) where appropriate. Use
- Evaluate the integral by rewriting the integrand and using u-substitution:\\ I = \int \begin{bmatrix} \frac{e^{arctan(x)} - 2x}{1 + x^2}\end{bmatrix} dx \\
- Let's integrate I = int x/sqrt(x^2-16)dx. We can use a substitution to express this integral in the form I = int g(u)du. The integral can then be evaluated as a function of u. But there are a few poss
- Consider the following integral. int {e^u}/{6 - e^u)^2} du Find a substitution to rewrite the integrand as - frac{1}{x^2} so that an equivalent integral is int -frac{1}{x^2} dx. a) Substitution: x = boxed{ } dx = ( boxed{ } ) du b) Evaluate the given int
- 1. Express the integrand as a sum of partial fractions and evaluate the integral: \int \frac{7x - 17}{x^2 - 6x - 7}dx = \int \frac{7x - 17}{ (x - 7) (x+1)}dx 2. Evaluate the integral. \\ \int \cos 7x \cos 2x dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{5x -13}{x^2 - 7x - 8}dx = \int \frac{5x - 13}{ (x - 8)(x + 1)} dx. Evaluate the integral.
- Use indefinite integral and substitution. 1. Evaluate the integral: \int \sin^3(x) \cos(x)dx 2. Evaluate the integral: \int x \sqrt {x + 1} dx
- 1) Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{7x - 13}{x^2 - 2x - 35}dx = \int \frac{7x - 13}{(x - 7) (x + 5)}dx 2) Evaluate the integral. \int sin 6t sin 3t dt
- Evaluate the following integral. int {x^2 - 11}{x^3 - 2x^2 + x} Find the partial fraction decomposition of the integrand.
- Evaluate the indefinite integral \int \frac{1}{(x-1)(x+4)}dx Evaluate the integral \int \frac{2(x-9)}{(x-2)(x+5)}dx Use partial fractions to evaluate the integral \int_{0}^{2} \frac{1}{x^{2}-2x-3}dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac {26s + 26}{(s^2+1)(s-1)^3} ds \int \frac {26s + 26}{(s^2+1)(s-1)^3} ds = \Box
- Evaluate the integral by making the given substitution. Integral \int \frac {dx}{(3x+6)^2}, u = 3 x + 6.
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{x^{2} + 6x + 9}{x^{3} - 1} dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{x^3}{x^2 + 4x + 4} dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{2x + 2}{(x^2 + 1)(x - 1)^3}dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{4x^2 + x + 108}{x^3+ 36x}
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{(-2x^2+8x+8)}{(x^2+4)(x-2)^3} dx.
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{100dx}{x^3 - 25x}
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac {4x + 43}{x^2 + 9x +14} dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \displaystyle \int \frac{x+7}{x^2+2x} \ dx
- Express the integrand as a sum of partial fractions and evaluate the integral. 1) \int \frac{(4x+30)}{x^2+10x+24}dx 2) \int \frac{(x+6)}{x^2+2x}dx 3) \int \frac{(6x-16)}{x^2-2x-24}dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{7x^2 + x + 216}{x^3 + 36x} dx
- 1. Evaluate the integral by using a substitution prior to integration by parts.\\ \int \cos (\ln x) dx \\ 2. Express the integrand as a sum of partial fractions and evaluate the integral.\\ \int \fra
- 10) Evaluate the integral by making the given substitution. \int \sec(5x)\tan(5x)dx; \ u=5x
- Consider the following integral: \int x \: (x^2 + 1)\: dx. Evaluate the integral by multiplying out the integrand.
- Evaluate the following integral using partial fraction decomposition of the integrand. K = \int \frac{3-2a}{(a+2)(a^2+3)}da
- Evaluate the integral by making the given substitution (use C for the constant of integration) \int \sin^4(\theta)\cos(\theta)\,d\theta, u=\sin(\theta)
- First make a substitution and then use integration by parts to evaluate the integral. \\ \int 7 \cos\sqrt x dx
- First make a substitution and then use integration by parts to evaluate the integral. \\ \int x\ln (3+x)dx
- First, make a substitution and then use integration by parts to evaluate the integral. \\ \int x^{11}\cos(x^6)dx
- First, make a substitution and then use integration-by-parts to evaluate the integral. \int { 4 \operatorname { cos } \sqrt { x } } d x
- Express the integrand as a sum of partial fractions and evaluate the integrals. \left. \begin{array} { l } { \int x ^ { 2 } + x / ( x ^ { 4 } - 3 x ^ { 2 } - 4 ) } \\ { \int 2 x + 2 / ( x ^ { 2 } + 1
- i. Evaluate the integral by making the given substitution. \int x^3(7 + x^4) dx, u = 7 + x^4 ii. Evaluate the indefinite integral. \int \frac{x^2}{\sqrt{0.4x^3 + 2.7 dx iii. Evaluate the indefinite integral. \int \frac{dx}{3 - 2x} dx
- Evaluate the integral by making the given substitution. int z sqrt z - 7 dz, u = z - 7
- Evaluate the integral by making the given substitution. (Use C for the constant of integration.) \int \dfrac{x^4}{x^5 - 7}\ dx,\ u = x^5 - 7
- Evaluate the integral by making the given substitution. (Use C for the constant of integration.) \int \frac{dt}{(1 - 6t)^s}, u = 1 - 6t
- Evaluate the integral by making the given substitution. (Use C for the constant of integration.) \\ \int \frac{dt}{ (1 - 2t)^9 }
- Evaluate the integral by making the given substitution. (Use C for the constant of integration.) \int x^3(6+x^4)^5 dx, u = 6+x^4
- Evaluate the integral by making the given substitution (Use C for the constant of integration) \int \frac{x^{4{x^{5}-2}dx, u=x^{5}-2
- Evaluate the integral by making the given substitution. (Use C for the constant of integration.) \int x^3 (1 + x^4)^5 dx, u = 1 + x^4
- Evaluate the integral by making the given substitution. (Use C for the constant of integration.) \int x^3(3 + x^4)^6 dx,\space u = 3 + x^4
- Evaluate the integral by making the given substitution. (Use C for the constant of integration.) \int \frac{dt}(1 - 5t)}^8}, \ u = 1- 5t
- Evaluate the integral by making the given substitution. (Use C for the constant of integration.) int {sec^2(1/x^7) / x^8} d x, u = 1/x^7
- Evaluate the integral by making the given substitution. (Use C for the constant of integration.) \int x^2 \sqrt{x^3 + 31} dx u = x^3 + 31
- Evaluate the integral by making the given substitution. (Use C for the constant of integration.) \int x^3(1 + x^4)^5\space dx, \space u = 1 + x^4
- Evaluate the integral by making the given substitution. (Use C for the constant of integration.) \int x^2 \sqrt{x^3 + 19}\ dx, u = x^3 + 19
- Evaluate the integral using substitution. Use C for the arbitrary constant. integral fraction 15 dt t^2 + 1 ^fraction 3 2
- Compute the following integral using a u-substitution; write all the work involving the substitution. \int \frac{\sin(\sqrt{x})}{\sqrt{xdx
- Evaluate the Integral \int (x^5 \sqrt{(10+x^6)})dx by making a u-substitution.
- Evaluate the integral by making the given substitution. \int \dfrac{\sec^2(1/x^5)}{x^6}\ dx, u = 1/x^5.
- Evaluate the integral by making the given substitution. \int x^{2}\sqrt{x^{3} + 24} dx, u = x^{3} + 24
- Evaluate the integral by making the given substitution. \int \dfrac{x^3}{x^4 - 6}\ dx,\ u = x^4 - 6
- Evaluate the integral by making the given substitution: \left. \begin{array} { l } { \text { (a) } \int _ { 0 } ^ { 1 } x ^ { 4 } e ^ { - x ^ { 16 } } d x } \\ { u = - x ^ { 16 } } \\ { \text { (b) }
- Evaluate the integral by making the given substitution. int 1 over x^2 sqrt 3 + 1 over x dx, u = 3 + 1 over x
- Evaluate the integral by making the given substitution: \int \frac{x}{\sqrt {1 - x^4 dx, \ u = x^2
- Evaluate the integral by making the given substitution. \int x^2\sqrt{x^3 + 9}dx,\ u= x^3 + 9
- Evaluate the integral by making the given substitution. \int \frac{dt}{(1-6t)^{3t; u= 1-6t.
- Evaluate the integral by making the given substitution. \int \sec (6x) \tan(6x) dx, u = 6x
- Evaluate the integral by making the given substitution. \displaystyle \int x^2\sqrt{x^3 + 8}\,dx, \quad u = x^3 + 8
- Evaluate the integral by making the given substitution. \int x^2 \sqrt{x^3+11} \; dx, \; u=x^3+11
- Evaluate the integral by making the given substitution. \int sec(2x)tan(2x) dx, u=2x.
- Evaluate the integral by making the give substitution. integral cos(2 x) dx, u = 2 x.
- Consider the integral int 5x^3(x^4+1)dx. In the following, we will evaluate the integral using two methods. A. First, rewrite the integral by multiplying out the integrand. Then evaluate the resulting
- Evaluate the integral. \int \frac{65}{(x-1)(x^{2} + 64)}dx , find a partial fraction decomposition of the integrand.
- Evaluate the integral by making the given substitution. (Use C for the constant of integration.) \int e^{-3x}dx, u = -3x
- Evaluate the integral by making the given substitution. (Use C for the constant of integration.) \int x^2\sqrt{x^3 + 3}\ dx,\ u = x^3 + 3
- Evaluate the integral by making the given substitution. ' \int x^2\sqrt{x^3+2}dx, \; u=x^3+2
- Use a substitution to reduce the following integral to \int \ln u du. Then evaluate the resulting integral. \int (\sec \times \tan x) \ln (\sec x + 18)dx Find the indefinite integral.
- Evaluate the integral. \int ^{36} _{25} \frac{In y}{\sqrt y } dy First make a substitution and then use integration by parts to evaluate the integral. \int 9 cos \sqrt x dx
- Evaluate the integral using substitution. \int \sqrt x \sin^2(x^{3/2}-1)dx, u=x^{3/2}-1
- Evaluate the integral using the indicated substitution. \int 2x(x^2 + 1)^{23}\ dx,\ u = x^2 + 1
- Evaluate the integral using the indicated substitution. \int {2x\left( x^2} + 1} \right)}^{23dx; \quad u = {x^2} + 1}
- Evaluate the indefinite integral using substitution. (Use C for the constant of integration.) \int \frac{x^7}{\sqrt{x^8 - 3dx
- Evaluate the integral \int x (7 + x^2)^{10} \, dx by making the substitution u = 7 + x^2
- Evaluate the integral \int \frac{\sec^2(1/x^6) }{ x^7} \, dx by making the substitution u = 1/x^6
- Evaluate the integral \int \frac{\sec^2(1/x^6)}{x^7} by making the substitution u = 1/x^6