Let the production function for the firm be Cobb-Douglass, with fixed capital (K):...
Question:
Let the production function for the firm be Cobb-Douglass, with fixed capital
(K): Y=zF(K,N{eq}^d {/eq})=z(K){eq}^\alpha {/eq}(N{eq}^d {/eq}){eq}^{(1-\alpha)} {/eq} where 0 is less than {eq}\alpha {/eq} is less than 1.
a. Solve for labor demand as a function K, z, w, and {eq}\alpha {/eq}.
b. How does labor demand change if total factor productivity doubles?
c. How does labor demand change if capital doubles?
Demand for Labor:
Demand for labor is a type of derived demand because firms' demand for labor is driven by consumer's demand for goods, which are produced using labor. When firms decide how many workers to hire, they compare the marginal product of labor to the wage rate.
Answer and Explanation: 1
Become a Study.com member to unlock this answer! Create your account
View this answera. Firms hire labor until the marginal product of labor is equal to the wage rate, i.e.,
- {eq}zK^{\alpha}(1 - \alpha)(N^d)^{-\alpha} = w {/eq}
which...
See full answer below.
Ask a question
Our experts can answer your tough homework and study questions.
Ask a question Ask a questionSearch Answers
Learn more about this topic:

from
Chapter 3 / Lesson 41Learn the labor market definition and what happens in the labor market. See what the split labor market theory is and learn the different types of labor market.
Related to this Question
- In a Cobb-Douglas production function with constant returns to scale for a firm that produces using only labor and capital, if the share of income that goes to labor is 42%, what does alpha equal? (En
- Long-run factor demand A price-taking firm (p = 100) chooses amounts of labor and capital that maximizes its profits. It has a decreasing returns to scale Cobb-Douglass production function: q(L, K) = L ^(1/6) K ^(1/8). The wage rate and rental rate of c
- Suppose the wage is 8, the rental rate of capital is 128, and the firm's CRS Cobb-Douglas production function is q=3L^(1/3)K^(2/3) a. What is the cost-minimizing bundle of labor and capital for produc
- Consider a Cobb-Douglas production function of: q(L,K) = 30K^0.3*L^0.7 where q is the production level, K is the quantity of capital, and L is the amount of labor. Suppose that a firm is interested in
- Consider a Cobb-Douglas production function: f(L,K)=0.5K^0.5L^0.5. Using this production function, solve a short-run profit maximization problem for a fixed capital stock K=4, output price p=8, wage rate w=2, and capital rental rate r=4.
- Let y = output, K = capital, L = labor, and W = wood. The Cobb-Douglass production function is y = AL^a K^b W^c, where A, a, b, and c are constants. Using statistical techniques, we can estimate the e
- For the following Cobb-Douglass production function, q = f ( L , K ) = L 0.45 K 0.7 a. Derive expressions for marginal product of labor and the marginal product of capital, M P L and M P K . b. D
- The Cobb-Douglas production function and the steady state. Suppose that the economy's production function is given by Y = K^alpha} N^1 - alpha. a. Is this production function characterized by constant
- Suppose that the production function for Halloween candy is given by Q(L, K) = AK^{\alpha} L^{1 - \alpha}, the price of labor is w, the price of capital is r and 0 less or equal than \alpha less or eq
- Use the Cobb-Douglas production function to show that a one-unit increase in the labor input will reduce the marginal product of labor and increase the marginal product of capital. Explain each of the
- Suppose that an economy's production function is Cobb-Douglas with parameter alpha = 0.3. Suppose that immigration increases the labor force by 10 percent. What happens to the rental price of capital?
- A production function is a mathematical relation between a firm or country's inputs (capital and labor) and outputs. Use the Cobb-Douglas Production Function Y = K alpha L 1 - alpha where Y is output (GDP or national income), K is capital, and L is labor
- Assume a firm has a Cobb-Douglas production function Y = L^{0.5} K^{0.5} . Assume (w) wage = $1, (r) rental = $2 and price of output (p) = $5 and firm has linear cost function. What is the marginal
- A firm produces output that can be sold at a price of $10. The Cobb-Douglas production function is given by Q = F(K,L) = K^1/2 L^1/2. If capital is fixed at 1 unit in the short run, how much labor should the firm employ to maximize profits if the wage rat
- Suppose that the production function for Halloween candy is given by Q(L,K) = AK^{alpha} L^{1-alpha} the price of labor is w, the price of capital is r and 0 less than or equal to alpha less than or e
- If a business has 'L' units of labor (e.g. workers) and K units of capital (e.g. production machines), then its production can be modeled by a Cobb-Douglass Production Function of: P(L,L) = beta L^alp
- Suppose that an economy's production function is Cobb-Douglas with parameter alpha = 0.3. Suppose that a gift of capital from abroad raises the capital stock by 10 percent. What happens to the rental price of capital?
- This question will walk you through finding the profit-maximizing level of output for a firm with Cobb-Douglas production. Suppose the firm's production function for output y is given by The firm is i
- Consider the Cobb-Douglas production function. K is the amount of capital, and L is the amount of labor. The isoquant associated with this function reflects the levels of capital and labor that yield
- Suppose that an economy's production function is Cobb-Douglas with parameter alpha = 0.3. Suppose that a gift of capital from abroad raises the capital stock by 10 percent. What happens to the real wage?
- For the following Cobb-Douglas production function, q=f(L,K)=L^(0.45) K^(0.7), derive expressions for marginal product of labor MP_L and marginal product of capital, MP_K.
- Suppose a firm's production function is given by Q = F(L, K) = 5LK where L is the amount of Labor and K is the amount of capital. For this particular Cobb-Douglas production function, MRTS(L,K) = K/L. The wage rate is $100 per unit of labor and the rental
- Suppose that an economy's production function is Cobb-Douglas with parameter alpha = 0.3. What fractions of income do capital and labor receive?
- When alpha = 3/4 and beta = 1/4 for the Cobb-Douglas production function, returns to scale are A) constant B) increasing C) decreasing D) first increasing and then decreasing
- A more general form of the Cobb Douglas production function is q = f(L, K) = AL^aK^b where A, a, b > 0 are constants. Use calculus to solve for the marginal product of labor (MPL).
- Consider an economy with the following Cobb-Douglas production function: Y = F(K, L) = K^1/3 L^2/3. A. Derive the equation describing labor demand in this economy as a function of the real wage and the capital stock. B. The economy has 27,000 units of cap
- Suppose that an economy's production function is Cobb-Douglas with parameter alpha = 0.3. Suppose that a technological advance raises the value of the parameter A by 10 percent. What happens to the rental price of capital?
- Consider the case when output in the Solow model is produced according to Cobb Douglas production function with share of capital alpha: Show that marginal product of capital at the steady state when savings rate s = alpha will be equal to depreciation ra
- A price-taking firm (p = 100) chooses an amount of labor to employ that maximizes its profits. It has a fixed amount of capital (K= 100) and a constant return to scale Cobb-Douglass production function: q(L, K) = L^(1/2) K^(1/2). The wage rate and rental
- Suppose that an economy's production function is Cobb-Douglas with parameter alpha = 0.3. Suppose that a technological advance raises the value of the parameter A by 10 percent. What happens to the real wage?
- A more general form of the Cobb Douglas production function is q = f(L, K) = AL^aK^b where A, a, b > 0 are constants. Use calculus to solve for the marginal product of capital (MPK).
- Suppose that an economy's production function is cobb-douglas with parameter α = 0.3 a. What fractions of income do capital and labor receive? b. Suppose that immigration increase the labor force by 10 percent. What happens to total output (in pre
- In this problem, you'll compare a short-run and a long-run cost function for a Cobb-Douglas production process. More specifically, assume that a firm uses labor and capital to produce an output accord
- An economy has a Cobb-Douglas production function: Y=K alpha (LE) 1-alpha. The economy has a capital share of a third, a saving rate of 24 percent, a depreciation rate of 3 percent, a rate of popula
- A firm's production function is given by f(L, K) = LK^1/2. The prices of labor and capital are w = 20 and r = 10, respectively. Suppose the firm's capital is fixed at 25. Find, as functions of output
- Suppose a firm has the Cobb-Douglas production function Q= f(K, L) = 2K^0.7L^0.8, where K is capital and L is labor. Using this function, show the following: (a) Does this production function exhibit
- In a Cobb-Douglas production function, can capital, K, and labour, L, be negative?
- Consider a firm, that has production function, f(L,K)=3L^2/3K^1/3. Does this production function satisfy the law of decreasing marginal returns of capital?
- In a Cobb-Douglas production function with constant returns to scale, if the share of income that goes to labor is 42%, what does alpha equal? Enter your number in decimal form as opposed to percentag
- An economy has a Cobb-Douglas production function: Y = Kalpha(LE) 1-alpha. The economy has a capital share of a third, a saving rate of 24 percent, a depreciation rate of 3 percent, a rate of populati
- A price-taking firm chooses its inputs to maximize short-run profits. Its Cobb-Douglass production function has the following form: q(L, K) = L^{\frac{1}{2 K ^{\frac{1}{3. The output price is 1,000 per unit, and the cost of each unit of input is 10. I
- A firm has a production function,q=A LaK1-a, where 0 is less than a is less than 1. It wants to minimize cost for a given production q. The wage rate and rental rate on capital are wand r, respectivel
- Cobb-Douglas production function is: Q = 1.4*L6{0.6}*K^{0.5}. What would be the percentage change in output (%ChangeQ) if labor grows by 3.0% and capital is cut by 5.0%? (Hint: %ChangeQ = (E_L * %
- Recall that a Cobb-Douglas production function has the form P = cL(^alpha) K(^beta) with c, alpha, beta greater than 0. Economists talk about increasing returns to scale if doubling L and K more than
- A firm has a production function F(L,K), where K is a fixed amount of capital, and L is the variable amount of labor hired. The equation w= pF_{L}(L,K) determines the amount of labor that the firm hir
- Assume you have the following Cobb-Douglas production function: F(K,L) = AK^a' L^(1-a') A) Using this production function, write out the equation that represents the marginal product of capital. B) Us
- Firm Alpha uses capital K and labor L to produce output q. The firm's production function is F(K,L)= 5K^{0.4}\times L^{0.6}. The prices of capital and labor are r = 4 and w=4, respectively. Moreover,
- Some economists believe that the US. economy as a whole can be modeled with the following production function, called the Cobb-Douglas production function: Y = AK^{1/3}L^{2/3} where Y is the amount of output K is the amount of capital, L is the amount of
- When estimated, exponents of the Cobb-Douglas production function indicates: a) maximum profits that can be earned. b) minimum cost that can lead to efficient production. c) input elasticities. d) different price elasticities in a different market.
- Given a Cobb-Douglas production function: Y(t)=K(t) alpha L(t)1-alpha where K(t) and L(t) are capital and labor respectively at time t. Assume population growth n and capital depreciation delta. Write
- Consider the Solow growth model (without tech.) for the Taiwanese economy: The first equation is a Cobb-Douglas production function with and The second equation states that the labor force grows at 5%
- A firm has a Cobb Douglas production function q = AL^{\alpha}K^{\beta}, where \alpha + \bet a= 1. On the basis of this information, what properties does its cost function have? The firms long run aver
- A firm's production function is given by q = f(L, K) = LK + 2L^2 K - L^3. Suppose the firm is operating in the short-run with K = 9. A) What is the marginal product of labor function? B) For what values of labor does increasing marginal product exist? C)
- Consider a Cobb-Douglas production function with three inputs. K is capital, L is unskilled labor, and H is skilled labor: Y = K^{1/3}L^{1/3}H^{1/3} Find: 1. The marginal product of unskilled labo
- Given the Cobb-Douglas production function for Mabel's factory Q=(L0.4)x(K0.7) a) Based on the function above, does Mabel's factory experiencing economies or diseconomies of scale? Explain. b) If the manager wished to raise productivity by 50% and planned
- Suppose a firm's production function is given by Q= L^1/2 * K^1/2.The marginal product of labor and the marginal product of capital is given by: MPL= K^1/2 /2L^1/2 and MPk= L^1/2/2K^ 1/2. Suppose the price of labor is w = 24 and the price of capital is r
- Given a Cobb-Douglas production function Q = 100K^(0.4) L^(0.6), the price of labor per unit is $60, and the price per unit is $40. Use the Lagrangian method to answer this question. You need to show
- A more general form of the Cobb Douglas production function is q = f(L, K) = AL^aK^b where A, a, b > 0 are constants. Suppose that A = 20, a = b = 0.5. Derive an equation for the isoquant q = 100 and graph it with labor on the x-axis and capital on the y-
- In the steady state of an economy, described by the Cobb-Douglas production function, the: a) Amount of the capital/labor ratio is constant, that is, unchanging b) The output/labor ratio is positive but decreasing c) Population growth and depreciation rat
- Consider the following Cobb-Douglas production function Y = 30K1/2L1/2. Calculate de marginal product of labor. Find the numerical value of MPL when K = 32 and L = 4. In the equilibrium, if we consider that the economy employs 8 workers, what would be the
- Firms use capital, K, and Labor, L, to produce output, Y, according to the following production function. Y = K^{alpha} L^{1 - alpha} 0 less than or equal to alpha less than or equal to 1
- Suppose that an economy's production function is Cobb-Douglas with parameter alpha = 0.3. Suppose that a technological advance raises the value of the parameter A by 10 percent. What happens to total output (in percent)?
- A firm has a production function, q = L^{0.6}K^{0.4}. It wants to minimize cost for a given production q. The wage rate and rental rate on capital are w and r, respectively. a. Write the Lagrangian ex
- Consider a firm with a Cobb-Douglas production function: Yt = AtKt^a Nt^1-a ; for 0 < a < 1 It is assumed that the interest rate R is 5% the depreciation rate of physical capital is 3% the capital g
- Consider a firm with the production function f(L,K) = L^{0.5}K^{0.5}. The wage rate and rental rate on capital are w and r, respectively. a. Use the Lagrangian for cost minimization to do derive the long-run cost function for this firm. b. Suppose the
- Firm Omega uses capital K and labor L to produce output q. The firm's production function is F(K,L) = 12K+3L. The prices of capital and labor are r = 40 and w=4, respectively. In the long-run, when th
- Some economists believe that the U.S. economy as a whole can be modeled with the following production function, called the Cobb-Douglas production function: where Y is the amount of output, K is the amount of capital, L is the amount of labor, and A is a
- 1. Finding the steady state K/N and Y/N. Suppose an economy's production function is given by: Y = \beta K^{\alpha} N^{1 - \alpha} where Y is output, K is capital, and N is labor. (a) Rewrite this
- Consider a Cobb-Douglas production function with three inputs. a. K is capital (the number of machines), b. L is labor (the number of workers), and c. H is human capital (the number of college degr
- Suppose that an economy's production function is Cobb-Douglas with parameter alpha = 0.3. Suppose that a gift of capital from abroad raises the capital stock by 10 percent. What happens to total output (in percent)?
- The Cobb-Douglas production function has the following general form: F(K,L)=ZK^{ \alpha}L^{1- \alpha} where Z > 0 is a parameter that represents overall productivity and \alpha is any constant between
- Suppose there is a fixed amount of capital K=20. Find a short run cost function CFK(q) when the wage is 6 and the rental rate of capital is 3 for a firm whose production function is F(K,L)=3^3/5L^2/5
- Suppose you have a firm whose production function is given by Q=K^0.3L^0.7. Wages=3, Rental rates=6, Price of product = $10 a) In the short run, capital is fixed at 5. What is the optimal labor demand in the short run? b) What is the optimal ratio of c
- Consider a firm with production function f(L,K)=L^1/7K^6/7 (cost minimization for this firm is characterized by the tangency rule). Assume also that the price of capital r=3 and the price of labor w=2
- Recall that a Cobb-Douglas production function is expressed as a. What is the marginal product of labor? b. What is the marginal product of capital? c. What is the Technical Rate of Substitution (tre
- Suppose that the firm's production function is given by Q = 10K(L)^1/3. The firm's capital is fixed at K. What amount of labor will the firm hire to solve its short-run cost-minimization problem?
- Given the Cobb-Douglas production function: (a) Graph the function. (b) Show that the function displays diminishing marginal product. Explain what you are doing. (c) Suppose the capital stock incre
- This firm doesn't use capital (K). They only use labor (L). Suppose the firm's production function is Y = L^(x). Furthermore, r = rental rate of capital and w = wage. Find the profit function and solv
- Let the production function be Q=4 x K1/4L^1/4, and assume that both factors are variable. a) Derive the contingent demand functions for K and L b) Substitute the contingent demand functions in the total cost that you minimized in part a) to obtain the to
- Consider the Production Function, Y = 25K1/3L2/3 (a) Calculate the marginal product of labor and capital (b) Does this production function exhibit constant/increasing/decreasing returns to scale? (
- Consider the following production function: Y = zK 1/3 N 2/3 If K is fixed, set up the firm's maximization problem and solve for the labor demand in terms of exogenous variables k, w, z.
- Assume that the world works according to the Classical model. In a small open economy, the output is produced according to a Cobb-Douglas production function, consumption is equal to C=40+0.6(Y-T) and the investment function is I=280-10r. You know that th
- Consider a firm with the production function, q=(K^1/2+L^1/2)^2. In the short-run, the level of capital is fixed. a) Determine the equations for MPL and APL. b) Solve for the short-run cost function (
- Suppose output is a function of skilled and unskilled labor (Cobb-Douglas production function) Y = H^a L^{(1 - a)}. What real-life factors can affect a, i.e. the elasticity of output with respect to
- A Cobb-Douglas production function for new company is given by ?? f(x,y) ? 50x 2 5 y 3 5 where x represents the units of labor and y represents the units of capital. Suppose units of Labor and capital
- Suppose that a firm has a production function given by: q= 10 L^{0.4}K^{0.6}. The firm has 10 units of capital in the short run. Which of the following will describe the marginal product of labor (MP_L) for this production function? Select one: a. Decr
- Derive the marginal rate of technical substitution for the Cobb-Douglass production function Q = cL^{alpha}K^{beta}.
- A firm has the production function: q = 10L^{0.5}K^{0.5}, the price of labor is w = 10 and the price of capital is r = 20 a) demonstrate that this function has constant returns to scale. b) derive the short-run marginal and average variable cost functio
- As its capital stock increases, a nation will: A. move rightward along a fixed production function. B. move leftward along a fixed production function. C. find its production function shifting upward. D. find its production function shifting downward. E.
- Consider the Cobb Douglas production function f (L,K) = L^alpha K^1/3. Suppose the input prices are w_L = 2 and w_K = 3. a) Formally write the long run cost minimization problem. For each value of the
- A firm has the production function f(k, l) = 2k sqrt l. Let the price of capital be r = 1, the price labor be w = 2, and the price of output be p. Find the marginal products of capital and labor. Does the firm have constant returns to scale?
- Assume that the world works according to the Classical model. In a small open economy, output is produced according to a Cobb-Douglas production function, consumption is equal to C = 40 + 0.6(Y - T), and the investment function is I = 280 - 10r. You know
- Suppose that a production function of a firm is given by Q= min{2L,K}, where Q denotes output, K capital, and L labor. Currently the wage is w=$10, and the rental rate of capital is r=$15. a. What is the cost and method of producing Q=20 units of capital