Copyright

Evaluate the integral: { x^2 \sqrt{( 9 - x^2 )} } using u-substitution, and not trigonometric...

Question:

Evaluate the integral {eq}\int x^2 \sqrt{( 9 - x^2 )} \, dx {/eq} using {eq}u {/eq}-substitution, and not trigonometric substitution.

Integration:

If we want to get the function back then, we integrate derivative. The opposite of the derivative known as integration. This rule to get back function is known as the antiderivative. The integration sum of the area of the sub rectangles within the subintervals of the limit. The formula we use here shown below:

{eq}\int \sqrt{a^{2}-x^{2}}dx=\frac{x}{2}\sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2}\sin ^{-1}(\frac{x}{a})+C {/eq}... (1)

Answer and Explanation: 1

Given a function {eq}\int x^2 \sqrt{( 9 - x^2 )} \, dx {/eq}.

{eq}\begin{align*} \int x^2 \sqrt{( 9 - x^2 )}dx&=\int \sqrt{( 9x^{4} - x^{6} )}dx\\ &=\int x\sqrt{( 9x^{2} - (x^{2})^{2} )}dx\\ \end{align*} {/eq}.

Let {eq}x^{2}=t {/eq} and differentiate for {eq}x {/eq} then, {eq}xdx=\frac{1}{2}dt {/eq}.

{eq}\begin{align*} \int x^2 \sqrt{( 9 - x^2 )}dx&=\frac{1}{2}\left [ \frac{( x^{2}-\frac{9}{2})}{2} \sqrt{( 9 - x^2 )}+\frac{81}{8}\sin ^{-1}(\frac{ x^{2}-\frac{9}{2}}{\frac{9}{2}})\right ]+C\\ &=\frac{1}{2}\left [\frac{\frac{( 2x^{2}-9)}{2}}{2} \sqrt{( 9 - x^2 )}+\frac{81}{8}\sin ^{-1}(\frac{ 2x^{2}-9}{9})\right] +C\\ &=\frac{1}{2}\left [ \frac{( 2x^{2}-9)}{4} \sqrt{( 9 - x^2 )}+\frac{81}{8}\sin ^{-1}(\frac{ 2x^{2}-9}{9})\right ]+C\\ \end{align*} {/eq}.

Put the value of {eq}t {/eq} in terms of {eq}x {/eq}.

{eq}\begin{align*} \int x^2 \sqrt{( 9 - x^2 )}dx&=\frac{1}{2}\left [ \frac{( x^{2}-\frac{9}{2})}{2} \sqrt{( 9 - x^2 )}+\frac{81}{8}\sin ^{-1}(\frac{ x^{2}-\frac{9}{2}}{\frac{9}{2}})\right ]+C\\ &=\frac{1}{2}\left [\frac{\frac{( 2x^{2}-9)}{2}}{2} \sqrt{( 9 - x^2 )}+\frac{81}{8}\sin ^{-1}(\frac{ 2x^{2}-9}{9})\right] +C\\ &=\frac{1}{2}\left [ \frac{( 2x^{2}-9)}{4} \sqrt{( 9 - x^2 )}+\frac{81}{8}\sin ^{-1}(\frac{ 2x^{2}-9}{9})\right ]+C\\ \end{align*} {/eq}.

Thus, the integral is {eq}\frac{1}{2}\left [ \frac{( 2x^{2}-9)}{4} \sqrt{( 9 - x^2 )}+\frac{81}{8}\sin ^{-1}(\frac{ 2x^{2}-9}{9})\right ]+C {/eq}.


Learn more about this topic:

Loading...
Integration Problems in Calculus: Solutions & Examples

from

Chapter 13 / Lesson 13
28K

Learn what integration problems are. Discover how to find integration sums and how to solve integral calculus problems using calculus example problems.


Related to this Question

Explore our homework questions and answers library