If you take an 11.5 mL sample of a 12.6 M NH3 solution and dilute it to a total volume of 0.650...
Question:
If you take an 11.5 mL sample of a 12.6 M {eq}NH_3 {/eq} solution and dilute it to a total volume of 0.650 L, what will be the concentration of the final solution?
Dilution of Solution:
The concentration of a solute species in a solution is often defined using a molarity value. It represents a number of solute moles dissolved per liter volume of the prepared solution. It can be calculated from a ratio of solute molar quantity and solution volume values. The solution volume can be increased without increasing the solute molar quantity dissolved within. This occurs through dilution by adding more of the pure liquid solvent. The solute molarity will be lower in the diluted solution relative to the starting stock solution.
Answer and Explanation: 1
Become a Study.com member to unlock this answer! Create your account
View this answerThis is an aqueous solution where ammonia is the solute. We are diluting a stock solution with an ammonia molarity of 12.6 M. We define the following...
See full answer below.
Ask a question
Our experts can answer your tough homework and study questions.
Ask a question Ask a questionSearch Answers
Learn more about this topic:

from
Chapter 8 / Lesson 5Want to know how to calculate dilution factor? See dilution equations, the dilution formula, and learn how to dilute acid and how to dilute a solution.
Related to this Question
- You dilute 10.0 mL of a 2.50 M solution to 500 mL. What is the final concentration?
- If 120 mL of a 6 M N a O H solution is diluted to a final volume of 200 mL, what is the resulting concentration of the solution?
- A 150.0-mL sample of Solution A is diluted to a total volume of 423 mL to form Solution B. If the concentration of Solution A was originally 20.0 mg/L, what is the concentration (in mg/L) of Solution
- If you dilute 15.0 mL of the stock solution to a final volume of 0.250 L, what will be the concentration of the diluted solution?
- If you dilute 18.0 mL of the stock solution to a final volume of 1.00 L, what will be the concentration of the diluted solution?
- If you dilute 17.0 ml of the stock solution to a final volume of 0.320 L, what will be the concentration of the diluted solution?
- If you dilute 17.0 mL of the stock solution to a final volume of 0.330 L, what will be the concentration of the diluted solution?
- If you dilute 21.0 mL of the stock solution to a final volume of 0.500 L, what will be the concentration of the diluted solution?
- If you dilute 10.0 mL of the stock solution to a final volume of 0.350 L, what will be the concentration of the diluted solution?
- If you dilute 18.0 mL of the stock solution to a final volume of 0.270 L, what will be the concentration of the diluted solution?
- If you dilute 19.0 mL of the stock solution to a final volume of 0.350 L, what will be the concentration of the diluted solution?
- If you dilute 18.0 mL of the stock solution to a final volume of 0.290 L, what will be the concentration of the diluted solution?
- If you dilute 18.0 ml of the stock solution to a final volume of 0.300 l, what will be the concentration of the diluted solution?
- If you dilute 11.0 mL of the stock solution to a final volume of 0.350 L, what will be the concentration of the diluted solution?
- A 5.00 mL sample of an 18.2 M solution is diluted to 0.1100 L. Then 3.00 mL of this solution is diluted to 0.700 L. What is the final concentration?
- What is the final concentration (M) of a solution prepared by diluting 50.0 mL of a 6.00 M KCl solution to a volume of 0.500 L? A) 0.0167 B) 1.67 C) 3.0 D) 0.600
- What is the final volume. In milliliters, when 10 0 mL of each of the following solutions is diluted to provide the given concentration? 11.5%(m/v) HC1 solution to give a 3 50 %(m/v) HC1 solution 4.00
- If you dilute 20.0 ml of the stock solution to a final volume of 0.320 L, what will be the concentration of the diluted solution?
- If you dilute 14.0 ml of the stock solution to a final volume of 0.260 l, what will be the concentration of the diluted solution?
- If you dilute 13.0 ml of the stock solution to a final volume of 0.340 l, what will be the concentration of the diluted solution?
- If you dilute 17.0 mL of the stock solution to a final volume of 0.270 L, what will be the concentration of the diluted solution?
- If you dilute 13.0 mL of the stock solution to a final volume of 0.330 L, what will be the concentration of the diluted solution?
- What is the final volume if 10.0 mL of solution with the initial concentration of 0.455 M is diluted to a final concentration of 0.00550 M?
- What is the final concentration of 35.7 mL of 52.0% m/m solution that is diluted to 65.9 mL?
- What is the concentration of a solution made by diluting 55 ml of 6.0 M HCl to a final volume of 750 ml?
- What is the concentration of a solution made by diluting 65 mL of 6.0 M HCl to a final volume of 750 mL?
- What is the concentration of a solution made by diluting 85 mL of 6.0 M HCI to a final volume of 750 mL?
- What is the concentration of a solution made by diluting 35 ml of 6.0 M HCL to a final volume of 750 ml?
- What is the concentration of a solution made by diluting 95 mL of 6.0 M HCl to a final volume of 750 mL?
- What is the concentration of a solution made by diluting 25 mL of 6.0 M HCl to a final volume of 750 mL?
- What is the concentration of a solution made by diluting 75 mL of 6.0 M HCl to a final volume of 750 mL?
- What is the concentration of a solution made by diluting 15 mL of 6.0 M HCI to a final volume of 750 mL?
- What is the concentration of a solution made by diluting 35 mL of 6.0 M HCI to a final volume of 750 mL? ................ M
- What is the concentration of a solution made by diluting 45 mL of 6.0 M HCl to a final volume of 750 mL?
- Calculate the concentration of a solution made by diluting 75.0 mL of 5.3 M HBr to a final volume of 600.0 mL.
- 57.0 mL of a 1.40 M solution is diluted to a total volume of 208 mL. A 104 mL portion of that solution is diluted by adding 105 mL of water. What is the final concentration?
- 54.0 mL of a 1.50 M solution is diluted to a total volume of 258 mL. A 129 mL portion of that solution is diluted by adding 165 mL of water. What is the final concentration?
- A solution with a volume of 200 mL that is 0.40 M SO2 is diluted to a volume of 400 mL. What is the concentration of the resulting solution?
- What is the final concentration (M) of a solution prepared by diluting 50.0 mL of a 6.00 M KCl solution to a volume of 0.500 L? A. 1.67. B. 0.600. C. 0.0167. D. 3.0. E. None of these.
- If you take a 13.5-mL portion of a stock solution and dilute it to a total volume of 0.350 L, what will be the concentration of the final solution?
- If you take a 10.0-mL portion of the stock solution and dilute it to a total volume of 0.300L , what will be the concentration ofthe final solution? M = ??? M
- Calculate the final concentration when a 27.0 mL sample of a 4.8% (m/v) KBr solution is diluted with water so that the final volume is 215.5 mL.
- A solution with a volume of 150 mL and a concentration of 0.30 M SO2 is diluted to a volume of 300 mL. What is the concentration of the resulting solution?
- A solution of NiCl2 with a volume of 50 mL and a concentration of 0.15 M is diluted to a volume of 0.20 L. What is the concentration of the resulting solution?
- Calculate the final concentration of the solution in a 50.0 mL sample of a 2.50 M KCl solution, diluted with water to 0.400 L.
- 53.0 mL of a 1.20 M solution is diluted to a total volume of 238 mL. A 119-mL portion of that solution is diluted by adding 185 mL of water. What is the final concentration? Assume the volumes are add
- 61.0 mL of a 1.30 M solution is diluted to a total volume of 248 mL. A 124-mL portion of that solution is diluted by adding 129 mL of water. What is the final concentration? Assume the volumes are add
- 59.0 mL of a 1.40 M solution is diluted to a total volume of 278 mL. A 139-mL portion of that solution is diluted by adding 129 mL of water. What is the final concentration? Assume the volumes are add
- 59.0 mL of a 1.20 M solution is diluted to a total volume of 218 mL. A 109-mL portion of that solution is diluted by adding 147 mL of water. What is the final concentration? Assume the volumes are add
- 64 0 mL of a 130 M solution is diluted to a total volume of 278 mL. A 139-mL portion of that solution is diluted by adding 163 mL of water. What is the final concentration? Assume the volumes are addi
- 65 0 ml of a 1.40 M solution is diluted to a total volume of 238 mL. A 119-mL portion of that solution is diluted by adding 187 mL of water. What is the final concentration? Assume the volumes are add
- 58.0 mL of a 1.60 M solution is diluted to a total volume of 288 mL. A 144-mL portion of that solution is diluted by adding 173 mL of water. What is the final concentration? Assume the volumes are add
- 69.0 mL of a 1.80 M solution is diluted to a total volume of 258 mL. A 129 mL portion of that solution is diluted by adding 109 mL of water. What is the final concentration? Assume the volumes are add
- 50.0 mL Of a 1.40 M solution is diluted to a total volume of 218 mL. A 109-mL portion of that solution is diluted by adding 121 mL of water. What is the final concentration? Assume the volumes are add
- 52.0 mL of a 1.50 M solution is diluted to a total volume of 288 mL. A 144-mL portion of that solution is diluted by adding 189 mL of water. What is the final concentration? Assume the volumes are add
- 75.0 mL of a 1.40 M solution is diluted to a total volume of 228 mL. A 114-mL portion of that solution is diluted by adding 159 mL of water. What is the final concentration? Assume the volumes are add
- 75.0 mL of a 1.20 M solution is diluted to a total volume of 248 mL. A 124-mL portion of that solution is diluted by adding 111 mL of water. What is the final concentration? Assume the volumes are add
- 71.0 mL of a 1.30 M solution is diluted to a total volume of 238 mL. A 119 mL portion of that solution is diluted by adding 105 mL of water. What is the final concentration? Assume the volumes are add
- A 63.0 mL of a 1.30 M solution is diluted to a total volume of 248 mL. A 124-mL portion of that solution is diluted by adding 173 mL of water. What is the final concentration? Assume the volumes are a
- 75.0 mL of a 1.50 M solution is diluted to a total volume of 278 mL. A 139-mL portion of that solution is diluted by adding 139 mL of water. What is the final concentration? Assume the volumes are add
- 50.0 mL of a 1.50 M solution is diluted to a total volume of 248 mL. A 124-mL portion of that solution is diluted by adding 181 mL of water. What is the final concentration? Assume the volumes are add
- 59.0 mL of a 1.60 M solution is diluted to a total volume of 268 mL. A 134-mL portion of that solution is diluted by adding 111 mL of water. What is the final concentration? Assume the volumes are add
- 67.0 mL of a 1.60 M solution is diluted to a total volume of 268 mL. A 134-mL portion of that solution is diluted by adding 131 mL of water. What is the final concentration? Assume the volumes are add
- 52.0 mL of a 1.70 M solution is diluted to a total volume of 258 mL. A 129-mL portion of that solution is diluted by adding 109 mL of water. What is the final concentration? Assume the volumes are add
- 53.0 mL of a 1.50 M solution is diluted to a total volume of 258 mL. A 129 mL portion of that solution is diluted by adding 195 mL of water. What is the final concentration? Assume the volumes are add
- 77.0 mL of a 1.20 M solution is diluted to a total volume of 288 mL. A 144 mL portion of that solution is diluted by adding 155 mL of water. What is the final concentration? Assume the volumes are add
- 54.0 mL of a 1.40 M solution is diluted to a total volume of 208 mL. A 104-mL portion of that solution is diluted by adding 109 mL of water. What is the final concentration? Assume the volumes are add
- 74.0 mL of a 1.30 M solution is diluted to a total volume of 278 mL. A 139-mL portion of that solution is diluted by adding 151 mL of water. What is the final concentration? Assume the volumes are add
- 59.0 mL of a 1.60 M solution is diluted to a total volume of 268 mL. A 134-mL portion of that solution is diluted by adding 173 mL of water. What is the final concentration? Assume the volumes are add
- 54.0 mL of a 1.30 M solution is diluted to a total volume of 258 mL. A 129-mL portion of that solution is diluted by adding 147 mL of water. What is the final concentration? Assume the volumes are add
- 59.0 mL of a 1.40 M solution is diluted to a total volume of 206 mL. A 104-ml portion of that solution is diluted by adding 147 mL of water. What is the final concentration? Assume the volumes are add
- 52.0 mL of a 1.50 M solution is diluted to a total volume of 208 mL. A 104-mL portion of that solution is diluted by adding 147 mL of water. What is the final concentration? Assume the volumes are add
- What is the concentration of the solution prepared by diluting 0.200 L of a 2.00 M solution to a final volume of 0.800 L?
- What is the concentration of the solution prepared by diluting 0.200 L of a 2.00 M solution to a final volume of 0.800 L? a) 8.00 M b) 0.200 M c) 0.500 M d) 0.400 M e) 0.800 M
- 53.0 mL of a 1.60 M solution is diluted to a total volume of 288 mL. A 144-mL portion of that solution is diluted by adding 121 mL of water. What is the final concentration? Assume the volumes are a
- What would be the concentration of the solution prepared by diluting 20.0 ml of 15.0 M HCl to a total volume of 200 mL?
- What is the final molar concentration after 100-mL of 5.0-M KCl solution is diluted with water to give a final volume of 200-mL?
- 67.0 mL of a 1.50 M solution is diluted to a volume of 258 mL. A 129 mL portion of that solution is diluted using 163 mL of water. What is the final concentration?
- 7.60 mL of a 1.30 M solution is diluted to a volume of 248 mL. A 124-mL portion of that solution is diluted using 183 mL of water. What is the final concentration?
- 76 mL of 1.40 M solution is diluted to a volume of 288 mL. A 144 mL portion of that solution is diluted using 143 mL of water. What is the final concentration?
- 75.0 mL of a 1.8 M solution is diluted to a volume of 258 mL. A 129-mL portion of that solution is diluted using 187 mL of water. What is the final concentration?
- 50.0 mL of a 1.20 M solution is diluted to a volume of 238 mL. A 119-mL portion of that solution is diluted using 141 mL of water. What is the final concentration?
- 78 mL of a 1.60M solution is diluted to a volume of a 238mL. A 119-mL portion of that solution is diluted using 133 mL of water. What is the final concentration?
- 62.0 mL of a 1.70 M solution is diluted to a volume of 288 mL. A 144-mL portion of that solution is diluted using 183 mL of water. What is the final concentration?
- 75.0 mL of a 1.80 M solution is diluted to a volume of 258 mL. A 129 mL portion of that solution is diluted using 187 mL of water. What is the final concentration?
- 72.0 ml of a 1.50 M solution is diluted to a volume of 288 mL. A 144 mL portion of that solution is diluted using 185 mL of water. What is the final concentration?
- 75.0 mL of a 1.40 M solution is diluted to a volume of 248 mL. A 124 mL portion of that solution is diluted using 165 mL of water. What is the final concentration?
- If you take a 10.5-mL portion of the stock solution and dilute it to a total volume of 0.700 L , what will be the concentration of the final solution? BELOW IS MY ANSWER FOR THE FIRST QUESTION, WHICH
- What is the final concentration of a solution if 15 mL of a 2.4 M solution was diluted to 100 mL and this process was repeated two more times?
- If 80 mL of a 6 MNaOH solution is diluted to a final volume of 200 mL , what is the resulting concentration of the solution?
- If 5.0 mL of a 1.25 M solution is diluted to 25.0 mL, what is the final molarity of the dilute solution?
- If you take a 10.0-mL portion of the stock solution and dilute it to a total volume of 0.430 L, what will be the concentration of the final solution?
- If you take a 10.0 ml portion of the stock solution and dilute it to a total volume of 0.700 L, what will be the concentration of the final solution?
- If you take 25 mL of a 500 ppb solution and add sufficient water until the volume is 100 mL, and mix thoroughly what is the concentration of the final solution? You dilute 10.0 mL of a 2.50 M solution to 500 mL, what is the final concentration?
- If you take 10 mL of a 500 ppb solution and add sufficient water until the total volume is 250 mL and mix thoroughly, what is the concentration of the final solution?
- If you take 10 mL of a 500 ppb solution and add sufficient water until the total volume is 250 mL and mix thoroughly, what is the concentration of the final solution in ppb?
- If you take 10 mL of a 500 ppb solution, add sufficient water until the total volume is 250 mL, and mix thoroughly, what is the concentration of the final solution in ppb?
- If you take 25 mL of a 500 ppb solution and add sufficient water until the volume is 100 mL and mix thoroughly, what is the concentration of the final solution?
- If 50 mL of a 100% solution is diluted to 1500 mL total volume, what is the percent concentration of the resulting solution?
- If you have a solution that is 0.50 mol/L, and you then take 35 mL of this solution and make it up to 175 mL total volume by diluting it with water, what is the new concentration?