If {f}''\left ( x \right )= 3x^2-5\sin x+ 2\varrho^x, {f}'\left(0\right)=10 and...

Question:

If {eq}{f}''\left ( x \right )= 3x^2-5\sin x+ 2\varrho^x, {f}'\left(0\right)=10 and f\left(0\right)=0 {/eq}, then what is f(x)?

Initial Value Problem:

Note that in the problem above we are provided with the second derivative of a function, and in addition we are also provided with two initial values. These kinds of problems are called initial value problems, IVP for short. In order to solve this problem, we will need to integrate a couple times, and apply the initial conditions to find the constants of integration that we will pick up along the way.

Answer and Explanation:

First, let's rewrite the exponential function as a natural exponential function.

{eq}\begin{align*} 2 \rho^x &= 2 e^{\ln \rho^x}\\ &= 2 e^{(\ln \rho)\ x} \end{align*} {/eq}

We antidifferentiate divine to find

{eq}\begin{align*} f' (x) &= \int 3x^2-5\sin x+ 2 e^{(\ln \rho)\ x} \ dx \\ &= x^3 + 5 \cos x + \frac2{\ln \rho}\ e^{(\ln \rho)\ x} + C \end{align*} {/eq}

Then, since {eq}f'(0)=10 {/eq} we have

{eq}\begin{align*} 0 + 5 \cos 0 + \frac2{\ln \rho}\ e^{0} + C &= 10 \\ C &= 5 - \frac2{\ln \rho} \end{align*} {/eq}

And so

{eq}\begin{align*} f' (x) &= x^3 + 5 \cos x + \frac2{\ln \rho}\ e^{(\ln \rho)\ x} +5 - \frac2{\ln \rho} \end{align*} {/eq}

We antidifferentiate again to find

{eq}\begin{align*} f (x) &= \int x^3 + 5 \cos x + \frac2{\ln \rho}\ e^{(\ln \rho)\ x} +5 - \frac2{\ln \rho} \ dx\\ &= \frac14 x^4 + 5\sin x + \frac2{\ln^2 \rho}\ e^{(\ln \rho)\ x} +\left (5 - \frac2{\ln \rho} \right ) x + D \end{align*} {/eq}

And since {eq}f(0) = 0 {/eq} we have

{eq}\begin{align*} 0+ 5\sin 0 + \frac2{\ln^2 \rho}\ e^{0} +0 + D &= 0\\ D &= - \frac2{\ln^2 \rho} \end{align*} {/eq}

So we ultimately find

{eq}\begin{align*} f (x) &= \boldsymbol{ \frac14 x^4 + 5\sin x + \frac2{\ln^2 \rho}\ \rho^x +\left (5 - \frac2{\ln \rho} \right ) x - \frac2{\ln^2 \rho} } \end{align*} {/eq}


Learn more about this topic:

Loading...
Initial Value in Calculus: Definition, Method & Example

from

Chapter 11 / Lesson 13
15K

Learn to define the initial value problem and initial value formula. Learn how to solve initial value problems in calculus. See examples of initial value problems.


Related to this Question

Explore our homework questions and answers library