Firm Omega uses capital K and labor L to produce output q. The firm's production function is...
Question:
Firm Omega uses capital K and labor L to produce output q. The firm's production function is F(K,L) = 12K+3L. The prices of capital and labor are r = 40 and w=4, respectively. In the long-run, when the firm produces q=720 units of output, the total cost is:
A) C = 1,200
B) C = 960
C) C = 480
D) C = 240
E) C = 1,680
Perfect Substitutes:
In economics, two goods are said to be perfect substitutes if one good could be substituted for another one at a fixed proportion, regardless of prices, without reducing utility to the consumer. Perfect substitutes are perhaps hard to find in absolute terms, but close examples include butter produced from different farms, bottle waters from different manufacturers.
Answer and Explanation: 1
Become a Study.com member to unlock this answer! Create your account
View this answerThe answer is B).
Note first that the production in this case features perfect substitutes. Specifically, one unit of capital can always substitute...
See full answer below.
Ask a question
Our experts can answer your tough homework and study questions.
Ask a question Ask a questionSearch Answers
Learn more about this topic:

from
Chapter 24 / Lesson 6Learn the profit maximization definition, its importance, and explore the profit maximization theory. See how to calculate profit maximization with examples.
Related to this Question
- Firm Alpha uses capital K and labor L to produce output q. The firm's production function is F(K,L)= 5K^{0.4}\times L^{0.6}. The prices of capital and labor are r = 4 and w=4, respectively. Moreover,
- A firm's production function is given by f(L, K) = LK^1/2. The prices of labor and capital are w = 20 and r = 10, respectively. Suppose the firm's capital is fixed at 25. Find, as functions of output
- The long-run production function for a firm's product is given by q = f(K; L) = 5 K L. The price of capital is $10 and the price of labor is $15. a. Suppose the firm wishes to produce an output of 500. List 5 combinations of capital and labor that the fi
- Capital and labor, denoted by K and L restively, are used to produce output denoted by q, so firm's production function is equal to q = min {K, 2L} The price of capital is $5 and the price of labor is
- A firm's production function is given by Q = 2L - L^2 + K. The price of labor is w > 0 and the price of capital is r > 0. Assuming the firm uses both labor and capital, derive the long-run total cost function.
- A firm uses labor, denoted by L, and capital, denoted by K, to produce skateboards, denoted by q. The firm's production function is q = K^{1/2}L^{1/2}. The price of capital and labor are both equal to
- A firms production function is given be Q=f(L,K)=L^1/2K^1/2. The prices of labor (w) and of capital (r) are $2.5/unit and $5/unit, respectively. Suppose that the firm has a capital employment of 25 un
- A manufacturing firm's production function is Q = KL + K +L. For this production function, MPL = K + 1 and MPK = L + 1. Suppose that the price r of capital services is equal to 1, and let w denote the price of the labor services. If the firm is required t
- A firm is producing output Q using a mix of capital K and labor L. The production function is given by . A unit of capital costs $3 and a unit of labor costs $9. The firm wants to minimize the total c
- A firm uses capital and labor to produce a single output good. The production function is given by F(K, L) = K L^{0.5} where K is the amount of capital and L is the amount of labor employed by the firm. The unit prices of capital and labor are given by, r
- A firm produces output according to the production function Q = F (K, L) = K + 10L. If the wage rate is $50 per hour and the rental rate on capital is $4 per hour, what is the cost-minimizing input m
- A firm's production process uses labor, L, and capital, K, and materials, M, to produce an output, Q according to the function Q= KLM, where the marginal products of the three inputs are MP_L= KM, MP_K = LM, and MP_M= KL. The wage rate for labor is w = 2
- A firm produces output according to the production function Q = F(K, L) = 4K + 8L. 1. If the wage rate is $60 per hour and the rental rate on capital is $20 per hour, what is the cost-minimizing capital and labor for producing 32 units of output? 2. If th
- A firm produces output according to a production function: Q = F(K,L) = min {6K,6L}. How much output is produced when K = 2 and L = 3? If the wage rate is $60 per hour and the rental rate on capital i
- The production function for a certain firm is given by Q = 20K^(0.7)L^(0.3), where Q is the firm's annual output, K is the firm's capital input and L is the firm's labor input. The price per unit of c
- A firm s production function is Q = min(L, 4K). The price of labor is w > 0 and the price of capital is r > 0. Derive the demand function for labor and capital respectively. How does the demand for capital change with the price of capital?
- A competitive firm produces output y using two inputs, labour L and capital K, The production function is given by F(K,L)=K^(1/3)L^(1/3). The firm takes the input and output prices as given and they a
- Suppose a firm can use either Capital (K) or Labor (L) in a production process. The firm's Production function is given by Q = 5L+ 15K. The price of Capital is $20 per unit and the price of Labor is
- Suppose a firm can use either capital (K) or labor (L) in a production process. The firms production function is given by Q = 5L + 15K. The price of capital is $20 per unit and the price of labor is $8 per unit. a. What is the firm's total cost function?
- Suppose a firm's production function is Q = 4K0.5 L0.5. Its level of capital is fixed at 4 units, the price of labor is PL = $16 per unit, and the price of capital is PK = $20 per unit. The firms aver
- Suppose a firm can use either Capital (K) or Labor (L) in a production process. The firms Production function is given by Q = 5L + 15K. The price of Capital is $20 per unit and the price of Labor is $
- A firm's production function is given by Q=2L^1}/{2+4K^1}/{2 }] where Q, L, and K denote the number of units of output, labor, and capital, respectively. Labor costs are $2 per unit, capital
- A firm produces a product with labor and capital. Its production function is described by Q = 2L + 3K. Let w and r be the prices of labor and capital, respectively. (a) Find the equation for the firm's long-run total cost curves as a function of quantity
- A firm produces output according to a production function: Q = F(K,L) = min {3K,6L}, where K is capital, and L is labor. a) How much output is produced when K = 2 and L = 3? b) If the wage rate is $55
- A firm has a production function Q = F(K,L) with constant returns to scale, where K is units of capital and L is units of labour. Input prices are r = $2 per unit of K and w = $1 per unit of L. When i
- Suppose that a production function of a firm is given by Q= min{2L,K}, where Q denotes output, K capital, and L labor. Currently the wage is w=$10, and the rental rate of capital is r=$15. a. What is the cost and method of producing Q=20 units of capital
- A firm has the following production function: Q = 50K + 20L. Each unit of capital costs $4 to employ and each unit of labor costs $1 to employ. Labor and capital are this firm's only costs of production. The firm is currently producing 250 units of output
- This firm doesn't use capital (K). They only use labor (L). Suppose the firm's production function is Y = L^(x). Furthermore, r = rental rate of capital and w = wage. Find the profit function and solv
- A firm produces output according to a production function: Q = F(K,L) = min\space {2K,2L}. a. How much output is produced when K = 2 and L = 3? b. If the wage rate is $65 per hour and the rental rate on capital is $35 per hour, what is the cost-minimizin
- A firm employs labor L and capital K = 10 to produce using the production function q = 60K^2L^2 - K^3L^3. Derive the total product of labor curve.
- If a firm has a production function f(k,l) = 3k^{0.3}l^{0.5} where r = 8, w = 9, and the price of output = 17, What is profit maximizing level of capital? For this question both the level of capital
- Consider a firm that uses labor (L) and capital (K) to produce a general output (q) using the following production function: \\ q = K^{0.9}L^{0.1} \\ The firm seeks to produce q = 60 units for sale and faces prices for labor of w = 5 and capital of r = 6.
- Suppose a firm has a production function given by Q = L1/2K1/2. The firm can purchase labor, L, at a price w = 8, and capital, K, at a price of r = 2. a) What is the firm's total cost function, TC(Q)? b) What is the firm's marginal cost of production?
- A firm's production function is given by Q = 2L - L^2 + K. The price of labor is w > 0 and the price of capital is r > 0. Assuming the firm uses both labor and capital. Suppose w = 1 and r = 1. At what output level is L = 0.5 a cost-minimizing choice of l
- A firm produces according to the following production function: Q = K0.25L0.75. The price of K is $4 per unit, and the price of L is $6 per unit. a. What is the optimal capital/labor ratio? b. Derive the amount of capital and labor required to produce 400
- Suppose in the short run a firm's production function is given by Q = L1/2K1/2, and K is fixed at K = 36. If the price of labor, w = $12 per unit of labor, what is the firm's marginal cost of production when the firm is producing 48 units of output?
- A firm's production function is given by the equation Q=10K0.3L0.7 where Q represents units of output, K units of capital, and L units of labor. a. What are the returns to scale? b. What is the output elasticity of labor?
- Suppose a firms production function is Q = 2K0.5 L0.5. Its level of capital is fixed at 9 units, the price of labor is PL = $12 per unit, and the price of capital is PK = $10 per unit. The firms avera
- A firm has a production function q = 0.25KL^(0.5), the rental rate of capital is $100, and the wage rate is $25. In the short-run, capital is fixed at 100 units. a. What is the firm's short-run produc
- A firm has the production function f(k, l) = 2k sqrt l. Let the price of capital be r = 1, the price labor be w = 2, and the price of output be p. Find the marginal products of capital and labor. Does the firm have constant returns to scale?
- A firm produces output according to the production function: Q = F(K, L) = 4 K + 8 L. a. How much output is produced when K = 2 and L = 3? b. If the wage rate is $60 per hour and the rental rate on capital is $20 per hour, what is the cost-minimizing inpu
- A firm's production function is Q = min(L, 4K). The price of labor is w > 0 and the price of capital is r > 0. Suppose capital is fixed at K = 2 in the short run. Derive the short-run total cost function. Draw the short-run expansion path. Label your gr
- Consider a firm with the production function f(L,K)=L^{1/5}K^{4/5}. Assume that the price of capital r=3 and the price of labor w=2. If L^* and K^* are the amounts used by the firm to produce q units of output when both L and K are variable, then what is
- A firm has the production function: Q = 30 + 10 L + 5 K^2 - 5 K. If the firm has 4 units of capital (K) they plan to use, how much labor is needed to produce 300 units of output?
- A firm produces a good X. The production function is: Q = 5LK. L is labor in person hours, K is capital in machine hours and Q is quantity produced of good X. The firms's labor cost (w) is $20 per ho
- A firm's product function is Q = 5L^{0.5}K^{0.5}. Labor costs $40 per unit and capital costs $10 per unit. K = 16 in the short run. Suppose the production of a firm is Q = 5 + 2K + L. Which of the following statements is correct? A. The firm's production
- Given the following production function: q = 2K ^(1/3)L^(1/2) where K is capital and L is amount of labor used in the process. Price of capital is r, wage is w. Find the firm's long run cost function,
- A firm has a production function q = 0.25KL^{0.5}, the rental rate of capital is $100, and the wage rate is $25. In the short-run, capital is fixed at 100 units. a. Write the firm's. cost as a functi
- Suppose a firms production function is Q = 0.2K0.5 L0.5. Its level of capital is fixed at 25 units, the price of labor is PL = $8 per unit, and the price of capital is PK = $4 per unit. The firms aver
- A firm produces according to the following production function: Q = K^{0.5}L^{0.5} where Q = units of output, K = units of capital, and L = units of labor. Suppose that in the short run K = 100. Moreover, wage of labor is W = 5 and price of the product is
- A firm's production function is given by Q = 2L - L^2 + K. The price of labor is w > 0 and the price of capital is r > 0. Assuming the firm uses both labor and capital. Suppose w = 1 and r = 1. At what output level is K = 3 a cost-minimizing choice of cap
- Suppose that a firm's production function is q = 10L^{0.5}K^{0.5} . The cost of a unit of labor is $10/hour and the cost of capital is $40/hour, and the firm is currently producing q=1000 units
- Suppose a firm with a production function Q = KL is producing 125 units of output by using 5 workers (L) and 25 units of capital (K). The wage rate (W) per worker is $10 and the rental rate (price) pe
- Suppose a firm with a production function given by Q = K^{0.25}L^{0.75} produces 1,500 units of output. The firm pays a wage of $50 per unit and pays a rental rate of the capital of $50 per unit. To produce 1,500 units of output, the firm should use: a. 1
- A firm has production function: Q = f ( K , L ) = 0.1 K 1 / 2 L 3 / 4 , where, K has a price w K =1, and L has a price w L =2 a) In the long run, the cheapest way to produce exactly one unit of output ( Q =1) is to use how much L ? (Round to the
- Suppose the production function for a competitive firm is Q = K^.75L^.25. The firm sells its output at a price of $32 and can hire labor at a wage rate of $2. Capital is fixed at 1 unit. a. What is the profit-maximizing quantity of labor? b. If the price
- Consider a firm with two inputs, capital (K) and labor (L), with the price of capital Pk and the price of labor PL. The firm's production function is q(K, L) = 25KL. a. Write the firm's cost (as a function of K, L, Pk, PL). b. From the production function
- Assume that a firm employs labor and capital by paying $40 per unit of labor employed and $200 per hour to rent a unit of capital. Given that the production function is given by: Q = 10L - L^2+ 60K -1.5K^2, where Q is total output, L is labor, and K is c
- 1. Suppose that a firm's production function is q = 10L^{1/2}K^{1/2}. The cost of a unit of labor is $20 and the cost of a unit of capital is $80.a. If the firm wishes to produce 100 units of output,
- A firm produces output according to a production function: Q = F(K,L) = min(4K,4L). a. How much output is produced when K = 2 and L = 3? b. If the wage rate is $50 per hour and the rental rate on capi
- A firm produces output according to a production function: Q = F(K,L) = min {2K,2L}. a. How much output is produced when K = 2 and L = 3? b. If the wage rate is $40 per hour and the rental rate on cap
- A firm produces output according to a production function: Q = F(K,L) = min {9K,3L}. a. How much output is produced when K = 2 and L = 3? b. If the wage rate is $60 per hour and the rental rate on cap
- A firm produces output according to a production function: Q = F(K,L) = min {6K,6L}. a. How much output is produced when K = 2 and L = 3? b. If the wage rate is $60 per hour and the rental rate on cap
- A firm produces output according to a production function: Q = F(K,L) = min [2K,4L]. a) How much output is produced when K = 2 and L = 3? b) If the wage rate is $50 per hour and the rental rate on cap
- A firm's product function is Q = 5L^{0.5}K^{0.5}. Labor costs $40 per unit and capital costs $10 per unit. K = 16 in the short run. Suppose the production function of a firm is Q = 5 + 2K + L. Which of the following statements is correct? A. The firm's LA
- Suppose a firm has a production function given by Q = L^\frac{1}{2}K^\frac{1}{2}. Therefore, MP_L = \dfrac{K^\frac{1}{2{2L^\frac{1}{2 and MP_K = \dfrac{L^\frac{1}{2{2K^\frac{1}{2 The firm can purchase labor, L at a price w = 8, and capital, K at
- A firm produces output according to a production function: Q = F(K,L) = min(9K,3L) a. How much output is produced when K = 2 and L = 3? b. If the wage rate is $60 per hour and the rental rate on capit
- A firm produces output according to a production function: Q = F(K,L) = min(6K,6L). a. How much output is produced when K = 2 and L = 3? b. If the wage rate is $35 per hour and the rental rate on capi
- The production function for a firm is given by q = L^{.75} K^{.25} where q denotes output; Land K labor and capital inputs. (a) Determine marginal product of labor. Show whether or not the above production function exhibits diminishing marginal produ
- A factory produces output (Q) using capital (K) and labor (L) according to the production function Y(K,L)=K^{1/5}L^{4/5}. Let r denote the price per unit capital, and w denote the price per unit labor, so that the total expenditure on these factors is r_K
- A firm produces Q = K^{1/2}L^{1/4} units of its output good when it uses K units capital and L units of labor. The firm sells its output at the price of $16 per unit of output; it pays $4 per unit of capital and $2 per unit of labor. a. Is Q homogenous in
- A firm faces the production function Q = 15LK. The wage rate is 1 and the rental rate of capital is 5. What are the optimal amounts of L and K if the firm's objective is to produce Q = 1, 200? Use the
- The production function of a firm is y = min {2l, k} where y, l and k rest denote output, labor, and capital. The firm has to produce 10 units of output and the wage rate is 2 and the price of capital
- A firm produces output, y, by using capital, K, and labor, L 2. A firm produces a good Y, using capital K and labor L. The production technology is described by the following function: F(K,L) = K^{\
- There are 2 firms in the market and each of them plans the production as Q = K1/3L1/3, where K is capital and L is labor. Given K = 8, capital rental rate R = 0.5, and wage W = 8, what is the total cost of a firm if the market demand function is Q = (P +
- A firm produces output according to the production function: Q = F(K,L) = 4K + 8L. b. If the wage rate is $60 per hour and the rental rate on capital is $20 per hour, what is the cost-minimizing input mix for producing 32 units of output? c. If the wage r
- A firm's production function is Q = 8L^(1/2) and this firm sells each unit of its product at a price of P = $100. It also pays its workers a wage of w = $10. a. How many workers would this firm hire to maximize its profit if it only has labor costs and no
- Suppose a firm's production function is given by Q = 2L + K. Also, the price of Labor, w = 10, and the price of Capital, r = 4. If the firm minimizes the cost of production, how much will it cost the
- Suppose a firm's production function is given by Q = F(L, K) = 5LK where L is the amount of Labor and K is the amount of capital. For this particular Cobb-Douglas production function, MRTS(L,K) = K/L. The wage rate is $100 per unit of labor and the rental
- A firm has the production function q = k%%(vertical-align: super)0.50%% l%%(vertical-align: super)0.50%%. The price of k is v = 1 and the price of l is w = 1. The amount of k is fixed at k = 4. (a) W
- A firm produces output with the production function F(K,L) = K^{1/2}L^{1/2}. The price of capital is p_K = 10 and the price of labor is p_L = 40. Find the cost-minimizing input bundle for producing Q = 50 in the long run.
- A firm has carefully estimated its production function to be: Q = K^0.4L^ 0.6 , where Q = units of output, K = units of capital, and L = units of labor. If both capital and labor were increases by 10%,
- Suppose a firm with a production function given by Q = 30 K^{0.5}L^{0.5} produces 1,500 units of output. The firm pays a wage of $40 per unit and pays a rental rate of capital of $640 per unit. How many units of labor and capital should the firm employ to
- Suppose a firm with a production function given by Q = 30K^0.5L^0.5 produces 3,000 units of output. The firm pays a wage of $40 per unit and pays a rental rate of capital of $640 per unit. How many units of labor and capital should the firm employ to mini
- Suppose that the production function of a firm is given by the equation Q = 2K1/2L1/2, where Q represents units of output, K units of capital, and L units of labor. What is the marginal product of labor and the marginal product of capital at K = 40 and L
- Suppose that a firm's production function is q = 10L1/2K1/2. The cost of a unit of labor is $20 and the cost of a unit of capital is $80. a. Derive the long-run total cost curve function TC(q). b. The firm is currently producing 100 units of output. Find
- A firm has a production function F(L,K), where K is a fixed amount of capital, and L is the variable amount of labor hired. The equation w= pF_{L}(L,K) determines the amount of labor that the firm hir
- A firm has a production function given by Q = 10(K^{.25})(L^{.25}). Suppose that each unit of capital costs R and each unit of labor costs W. a.) Derive the long-run demands for capital and labor. b.) Derive the total cost curve for this firm. c.) Deri
- Consider a firm whose production function is Q = 0.4K^0.5L^0.5. Its level of capital is fixed at 100 units, the price of labor is PL = $4 per unit, and the price of capital is PK = $2 per unit. Given this information, the firm s total cost function is A)
- Suppose a firm with a production function given by Q = 30 K^{0.5}L^{0.5} produces 1,500 units of output. The firm pays a wage of $40 per unit and pays a rental rate of capital of $640 per unit. How
- A firm has the production function q = 0.2LK + 5L^2K - 0.1L^3K. Assume that K is fixed at 10 in the short run. A. What is the short-run production function? B. What is the marginal product of labor and the average product of labor in the short run? C. Whe
- A firm s production function is given by Q = 2L - L^2 + K. The price of labor is w > 0 and the price of capital is r > 0. Consider the isoquant Q = 5. Is there an uneconomic region of production? If yes, in the uneconomic region, which one is negative, MP
- Your firm must produce a specified output level. The firm uses capital and labor as inputs. If the price of capital is $40, the price of labor is $100, the marginal product of capital is 20, and the marginal product of labor is 40, then: - the firm is mi
- There are 2 firms in the market and each of them plans the production as Q = K1/3L1/3, where K is capital and L is labor. Given K = 8, capital rental rate R = 0.5, and wage W = 8, can you derive the variable cost of a firm if the market demand function is
- There are 2 firms in the market and each of them plans the production as Q = K1/3L1/3, where K is capital and L is labor. Given K = 8, capital rental rate R = 0.5, and wage W = 8, what is the equilibrium price for goods if the market demand function is Q
- A firm produces output that can be sold at a price of $10. The Cobb-Douglas production function is given by Q = F(K,L) = K^1/2 L^1/2. If capital is fixed at 1 unit in the short run, how much labor should the firm employ to maximize profits if the wage rat
- What is the cost-minimizing level of capital that the firm must use to produce a target level of output, Q = 1600? A firm's production process uses labor, L, and capital, K, and materials, M, to produce an output, Q according to the function Q= KLM, where
- A firm's product function is Q = 5L^{0.5}K^{0.5}. Labor costs $40 per unit and capital costs $10 per unit. K = 16 in the short run. Derive the long-run cost function for the firm. A. C = 4q B. C = 17q C. C = 8q D. C = 10q
- A plant's production function is Q = 2 KL + K . For this production function, M P K = 2 L + 1 and M P L = 2 K . The price of labor services, w , is $4 and of capital services, r , is $5 per unit. a.
- Suppose a production function is q = K^(1/2) L^(1/3) and in the short run capital K is fixed at 100. If the wage is $10 and the rental rate on capital is $20, the fixed cost is _____.