Express the given integrand as a sum of partial fractions, then evaluate the integrals. integral...
Question:
Express the given integrand as a sum of partial fractions, then evaluate the integrals.
{eq}\displaystyle \int \dfrac {5 x^2 - 17}{x^4 - 1}\ dx {/eq}
Integration with Partial Fractions Method:
In mathematics, the integration by parts method is used to integrate any complex rational function by expressing it as a sum of two or more simple fractions and helps to rewrite the integrand in the simplest form that can be easily integrated. In the rational function, the degree of the numerator should be less than the degree of the denominator.
Answer and Explanation: 1
Become a Study.com member to unlock this answer! Create your account
View this answer
Given Data:
- The given problem is: {eq}\int {\dfrac{{5{x^2} - 17}}{{{x^4} - 1}}} dx {/eq}.
First, we rewrite the integrand as:
{eq}\begin{align*...
See full answer below.
Ask a question
Our experts can answer your tough homework and study questions.
Ask a question Ask a questionSearch Answers
Learn more about this topic:

from
Chapter 3 / Lesson 26Learn about what partial fractions are and their formula. Understand the method of how to do partial fractions from the rational and improper functions.
Related to this Question
- Express the given integrand as a sum of partial fractions, then evaluate the integrals. \int_{\frac{1}{4^{1} \frac{3y + 12}{y^{2} + 3y} dy
- Express the integrand as a sum of partial fractions and evaluate the integral. Integral of (x^2 + x + 2) / (x(x - 1)^2) dx.
- Express the integrand as a sum of partial fractions and evaluate the integral. integral {5 x^2 + x + 36} / {x^3 + 9 x} dx
- Express the integrand as a sum of partial fractions and evaluate the integral. integral 3 x^2 + x + 4 / (x^2 + 3) (x - 5) dx
- Express the integrand as a sum of partial fractions and evaluate the integral. integral x^3 / x^2 + 10 x + 25 dx.
- Express the integrand as a sum of partial fractions and evaluate the integral. Integral of (x + 7)/(x^2 + 2x) dx.
- Express the integrand as a sum of partial fractions and evaluate the integral. \int_8^9 \frac{12}{x^2 - 36} dx A) 2.976 B) 6.336 C) -0.336 D) 0.336
- Express the integrand as sum of partial fractions and evaluate the integrals. \int^0_{-1} \frac{x^2}{x^2 - 2x + 1}dx
- Express the integrand as a sum of partial fractions and then evaluate the integrals. \int \frac{x^2}{x^4 - 1} dx
- Express the integrand as a sum of partial fractions and evaluate the integral. Integral of (5x^2 + x + 64)/(x^3 +16x) dx.
- Express the integrand as a sum of partial fractions and evaluate the integral. integral 22s + 22/(s^2 + 1)(s-1)^3 ds.
- Express the integrand as a sum of partial fractions and evaluate the integral. integral {12 x - 12} / {(s^2 + 1) (s - 1)} ds.
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac {3x^2 + x + 5}{(x^2 + 3)(x - 4)} dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int_{5}^{11}\frac{y}{y^2 - y - 2}dy
- 1. Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{2x + 32}{x^2 + 8x + 7} dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{4x^2 + x + 48}{x^3 + 16x} dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac {120}{t^3 + 2t^2 - 15t} dt
- Express the integrand as a sum of partial fractions and evaluate the integral. int 200 dx/x^3 - 25x
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac {6x^2 + x + 45}{x^3 + 9x} dx
- Express the integrand as a sum of partial fractions and evaluate the integral. integral_8^{11} y / {y^2 - 4 y - 5} dx.
- Express the integrand as a sum of partial fractions and evaluate the integral. \int x + 4x ^2 +4x -12\ dx
- Express the integrand as a sum of partial fractions and evaluate the integral: \int \frac{ 1}{x^2(x^2-25)}dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{2x + 26}{x^2 + 10x + 21 } dx.
- Express the integrand as a sum of partial fractions and evaluate the integral. 1. \int \frac { d x } { x ^ { 2 } ( x ^ { 2 } - 25 ) } 2. \int \frac { x + 9 } { x ^ { 2 } + 3 x } d x
- Express the integrand as a sum of partial fractions and evaluate the integral: \int\dfrac{x^{2}+x+2}{(x+1)(x^{2}+1)}dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{7x^2 + x + 216}{x^3 + 36x} dx
- Express the integrand as a sum of partial fractions and evaluate the integral. integral fraction {4x + 43}{x^2 + 9x + 14} dx
- Express the integrand as a sum of partial fractions and evaluate the integral. integral fraction {2s + 2}{(s^2 + 1)(s - 1)^3} ds
- Express the integrand as a sum of partial fractions and evaluate the integral. integral fraction 5x^2 + x + 36 x^3 + 9x dx
- Express the integrand as a sum of partial fractions and evaluate the integrals. \left. \begin{array} { l } { \int x ^ { 2 } + x / ( x ^ { 4 } - 3 x ^ { 2 } - 4 ) } \\ { \int 2 x + 2 / ( x ^ { 2 } + 1
- 1) Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{7x - 13}{x^2 - 2x - 35}dx = \int \frac{7x - 13}{(x - 7) (x + 5)}dx 2) Evaluate the integral. \int sin 6t sin 3t dt
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{(-2x^2+8x+8)}{(x^2+4)(x-2)^3} dx.
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{4x^2 + x + 108}{x^3+ 36x}
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{x^3}{x^2 + 4x + 4} dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{x^{2} + 6x + 9}{x^{3} - 1} dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \displaystyle \int \frac{x+7}{x^2+2x} \ dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{2x + 2}{(x^2 + 1)(x - 1)^3}dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{100dx}{x^3 - 25x}
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac {4x + 43}{x^2 + 9x +14} dx
- Express the given integral as a sum of partial fractions, and then evaluate the integrals. \int \frac{1}{25-49x^2}dx
- Express the integrand as a sum of partial fractions and evaluate the integral. Integral of (dx)/(x^2 (x^2 - 9)).
- Express the integral as a sum of partial fractions and evaluate the integral: \int ^5_1 3x^2+x+50/(x^2+25)(x+2) dx .
- 1. Express the integrand as a sum of partial fractions and evaluate the integral: \int \frac{7x - 17}{x^2 - 6x - 7}dx = \int \frac{7x - 17}{ (x - 7) (x+1)}dx 2. Evaluate the integral. \\ \int \cos 7x \cos 2x dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{5x -13}{x^2 - 7x - 8}dx = \int \frac{5x - 13}{ (x - 8)(x + 1)} dx. Evaluate the integral.
- Express the integrand as a sum of partial fractions and evaluate the integral \displaystyle \int \frac{10}{(x^2 - 1)^2} \ dx.
- Express the integrand as a sum of partial fractions and evaluate the integral \int\frac{(-2x^2+8x+8)}{((x^2+4)(x-2)^3)}
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac {26s + 26}{(s^2+1)(s-1)^3} ds \int \frac {26s + 26}{(s^2+1)(s-1)^3} ds = \Box
- Express the integral as a sum of partial fractions and evaluate the integral. \int_{-1}^0 \frac{x^3 dx}{x^2 - 2x + 1}
- Express the integral as a sum of partial fractions and evaluate the integral. \int_0^3 \frac{dx}{(x + 1)(x^2 + 1)}
- Express the given integrand as a sum of partial fractions, then evaluate the integrals. \int \frac{9x^{2} + 5x + 10}{x^{3} - 1} dx Which of the following is the value of the given integral?
- Express the integrand as a sum of partial fractions and evaluate the integral. 1. \int \frac { 4 x + 46 } { x ^ { 2 } + 8 x + 7 } d x 2. \int \frac { 5 x - 4 } { x ^ { 2 } - 4 x - 32 } d x
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac {108 dx}{x^3 - 9x}
- Express the integrand as a sum of partial fractions and evaluate the Integral. \int \frac { 36 d x } { x ^ { 3 } - 9 x }
- Evaluate the integrand as a sum of partial fractions and evaluate the integral. \int \frac{2x+27}{x^2+7x+6}dx
- Express the integral as a sum of partial fractions and evaluate the integral. int (5x^{2} - 5)/(x + 2)(x^{2} + 1)
- Express the integrand as a sum of partial fractions and evaluate the integral. 1) \int \frac{(4x+30)}{x^2+10x+24}dx 2) \int \frac{(x+6)}{x^2+2x}dx 3) \int \frac{(6x-16)}{x^2-2x-24}dx
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{2s + 2}{(s^2 + 1)(s-1)^3} ds (Use C as an arbitrary constant.)
- Express the integrand as a sum of partial fractions and evaluate the integral. \int \frac{y^2 + 32y + 256}{(y^2 + 256)^2} dy (Use C as an arbitrary constant.)
- Express the integrand as a sum of particle fractions and evaluate the integral. \int\frac{1}{(5x + 2)^{3dx
- 1. Evaluate the integral by using a substitution prior to integration by parts.\\ \int \cos (\ln x) dx \\ 2. Express the integrand as a sum of partial fractions and evaluate the integral.\\ \int \fra
- Evaluate the definite integral. Hint: Use partial fractions. integral 2^3 fraction 5x + 1 2x^2 - x - 1 dx
- Evaluate the integral as a sum of two integrals: integral {4x + 9} / {x^2 + 6 x + 13} dx.
- Evaluate using partial fractions: a. integral 5 x - 3 x 2 - 2 x - 3 d x b. integral x + 1 ( x + 2 ) 2 d x c. integral x 4 + x/ x 3 + x d x
- 1.a) Evaluate the integrand as a sum of partial fraction and evaluate the integral : \int \frac{(6x-16)}{(x^{2}-2x-24)}dx.b) Evaluate the integral: \int \cos (-1)xdx
- Express the integrated as a sum of partial fractions and evaluate the integral.
- Evaluate the integral using partial fractions. integral 2x - 1 / x^3 - x dx.
- Evaluate the integral using partial fractions: integral 5/x^2 + 3x - 4 dx
- Evaluate the integral using partial fractions: integral x + 2/x^2 + 11x + 18 dx
- Evaluate the integral using partial fractions. Integral of (x^3 + x - 1)/(x^2 + 2)^2 dx.
- Evaluate the integral using partial fractions integral 4 x 3 + 2 x 2 + 3 x + 1 x 2 - 1 d x
- Evaluate the following integral. int {x^2 - 11}{x^3 - 2x^2 + x} Find the partial fraction decomposition of the integrand.
- Evaluate the following integral using partial fraction decomposition of the integrand. K = \int \frac{3-2a}{(a+2)(a^2+3)}da
- Use partial fractions to evaluate the following integral. integral {x - 3} / {x^2 + 3 x - 10} dx
- Use partial fractions to evaluate the integral. integral 5 / x^2 (x^2 + 4) dx.
- Use partial fractions to evaluate the integral: integral {x^3 + 1} / {x^2 (x^2 + 1)} dx.
- Using partial fractions evaluate the integral: integral 4 / x^2 + 5x - 14.
- Use partial fractions to evaluate the integral. Integral x-3/x^2+3x-10
- evaluate the fallowing integral using partial fractions : integral 5x/(x+1)(x^2+4)dx
- Evaluate the indefinite integral \int \frac{1}{(x-1)(x+4)}dx Evaluate the integral \int \frac{2(x-9)}{(x-2)(x+5)}dx Use partial fractions to evaluate the integral \int_{0}^{2} \frac{1}{x^{2}-2x-3}dx
- Express the integrated as a sum of partial fractions and evaluate the integral. \int \frac{-2x^2+8x+8}{(x^2+4)(x-2)^3}dx
- Evaluate the integral into a sum of three integrals: int_{-1}^{6} mid 11x^2-x^3-24x mid dx.
- Evaluate the integral \int \frac{(1+8x)^{10{(x^3-x)^2 (x^2-5x+4) } \, dx using partial fractions decomposition of the integrand.
- Compute the following two integrals using partial fractions a ) ? x + 1 /x ( x^ 2 + 3 ) d x b ) ? x + 1 / ( x ? 1 ) ( x ^2 ? 2 x ? 3 ) d x
- Evaluate the following integrals using partial fraction decomposition. A.) \int \frac{x^2-2x-1}{(x-1)^2(x^2+1)}dx B.) \int \frac{\cos{x{\sin^2{x}+\sin{xdx C.) \int \sqrt{\frac{1-x}{1+xdx
- Evaluate the integrals. (a) integral _{0}^{pi} integral_{0}^{pi} integral_{0}^{pi} cos ( x+y+2z) dx dy dz (b) integral_{1}^{pi} integral_{1}^{pi} int_{0}^{pi} fraction {4y}{z^3} dy dz dx
- Use the partial fraction to evaluate the integral. Integral dt/t^3-t^2-2t
- Evaluate the integral \int \frac{3y^4+9y^2-1}{y^3+3y} \,dy by performing long division on the integrand and then writing the proper fraction as a sum of partial fractions.
- Evaluate the following integrals using partial fraction decomposition. 1. \displaystyle\int \frac { x ^ { 2 } - 4 x - 1 } { ( x - 2 ) ( x ^ { 2 } + 1 ) } d x 2. \displaystyle\int \frac { x - 5 } { x ^
- Use partial fraction decompositions to evaluate the following integral. (a) integral 2 - 1 x - 9 ( x - 6 ) ( x + 3 ) d x (b) integral 2 x 3 + x 2 d x
- Express the inetgrand as a sum of partial fractions and evaluate the integrals. \int \frac{3}{x^2+x-2}dx
- Evaluate the integral by the partial fractions method. Do the integral. \int \frac {2x}{(x + 3)(x + 1)} dx
- Compute the following integrals by using partial fraction: 1) \frac {x^{3} + 1} {x^{2} - 4} 2) \int \frac {dt} {t^{2}( t+ 1)(t - 2)} 3) \int \frac {2y^{2} - y + 4} {y^{3} + 4y} dy
- Evaluate the integral using partial fraction decomposition. integral e^x / (e^2 x + 1)(e^x - 1) dx
- Evaluate the integral using partial fraction decomposition. integral {7 x - 2} / {x^2 - x} dx
- The integrand as a sum of partial integral. \int \frac{72}{t^3 + 2t^2 - 8t} dt
- Is it possible to use a partial fraction decomposition to evaluate the following integral? If so, use it to evaluate the integral. \int ( 2x^{2} + x + 19 )/( (x + 1)(x^{2} + 9) ) dx
- Use partial fractions to evaluate the following integral: the integral from 1 to 2 of dx/(x^2 + 2x).
- Use partial fractions to evaluate the following integral. Integral of (dx)/(x^2 - 4).
- Use partial fractions to evaluate the integral of (x^3 + x^2 + 2x + 3)/(x^2 + 1)^2 dx.
- Use partial fractions to evaluate the integral. \int\frac{5x^2 + x + 36}{x^3 + 9x}dx