Copyright

Evaluate the integral with help of trigonometry substitution. \displaystyle \int \frac { x ^ {...

Question:

Evaluate the integral with help of trigonometry substitution.

{eq}\displaystyle \int \frac { x ^ { 2 } } { ( x ^ { 2 } - 1 ) ^ { 2 } \sqrt { x ^ { 2 } - 1 } } d x {/eq}

Trigonometry Substitution:

Trigonometry substitution is the substitution of trigonometric ratios on the place of variables. By doing this, the integration becomes easy to solve.

Here,

We substitute x=sec(u) {eq}\Rightarrow \ u=sec^{-1}x\\ \text{then differentiate with respect to u.} {/eq}

Answer and Explanation: 1

{eq}\Rightarrow \ I= \int \frac{ x ^ { 2 } } { ( x ^ { 2 } - 1 ) ^ { 2 } \sqrt { x ^ { 2 } - 1 } } d x\\ \text{Substitute} \ x=sec(u)\\ \Rightarrow \ u=sec^{-1}x\\ \text{Differentiate with respect to u}\\ \Rightarrow \ \frac{dx}{du}=sec(u)\cdotp\ tan(u)\\ \Rightarrow \ dx=sec(u)\cdotp\ tan(u)du\\ \text{Now, put this value in I}\\ \Rightarrow \ I= \int \frac{sec^{3}(u)\cdotp\ tan(u)}{ (sec^{2}(u)-1 )\sqrt{sec^{2}(u)-1 }}du\\ \text{As we know that}, \\ sec^{2}(u)=sec(u)\cdotp\ tan(u)\\ \Rightarrow \ I= \int \frac{sec^{3}(u)\cdotp\ tan(u)}{tan^{4}(u)\cdotp\ tan(u)}du\\ \Rightarrow \ I= \int \frac{sec^{3}(u)}{tan^{4}(u)}du\\ \Rightarrow \ I= \int \left(\frac{1}{cos^{3}(u)} \right)\cdotp \left(\frac{cos^{4}(u)}{sin^{4}(u)} \right)du\\ \Rightarrow \ I= \int \frac{cos(u)}{sin^{4}(u)}du\\ \text{Now,} \\ \text{Let} \ sin(u)=t\\ \text{Differentiate with respect to t}\\ \Rightarrow \ sin(u)=t\\ \Rightarrow \ cos(u)\frac{du}{dt}=1\\ \Rightarrow \ cos(u)du=dt\\ \text{put this value in I}\\ \Rightarrow \ I= \int \frac{dt}{t^{4}}dt\\ \Rightarrow \ I= \int\ t^{-4}dt\\ {/eq}

{eq}\Rightarrow \ \left[\frac{t^{-4+1}}{-4+1}\ \right]+C\\ \Rightarrow \ \frac{t^{-3}}{-3}+C\\ \Rightarrow \ -\frac{1}{3t^{3}}+C\\ \text{Now put }t=sin(u) \text{ in above solution}\\ \Rightarrow \ -\frac{1}{3sin^{3}(u)}+C\\ \text{Now put} \\ \Rightarrow \ u=sec^{-1}x \ \text{ in the above solution}\\ \Rightarrow \ -\frac{1}{3sin^{3}(sec^{-1}x)}+C\\ \text{As we know that}\\ \Rightarrow \ sec(x)=\frac{\text{ hypotenuse of the right angled triangle}}{\text{base of the right angled triangle}}\\ \Rightarrow \ sec^{-1}\frac{x}{1}\\ \text{Here, hypotenuse } =x \text{ and base}=1\\ \text{then perpendicular}=\sqrt{\text{hypotenuse}^{2}-\text{base}^{2}}\\ \Rightarrow \ \text{perpendicular}=\sqrt{x^{2}-1}\\ \text{then,} \\ \Rightarrow \ sin(x)=\frac{\text{perpendicular of right angled triangle}}{\text{hypotenuse of right angled triangle}}\\ \Rightarrow \ sin(x)=\frac{\sqrt{x^{2}-1}}{x^{2}}\\ \Rightarrow \ sin\left(sec^{-1}(x) \right)=\frac{\sqrt{x^{2}-1}}{x}\\ \Rightarrow \ sin^3 \left(sec^{-1}(x) \right)=\left(\frac{\sqrt{x^{2}-1}}{x} \right)^{3}\\ \Rightarrow \ sin^{3} \left(sec^{-1}(x) \right)=\frac{(x^{2}-1)^\frac{3}{2}}{x^{3}}\\ \text{now put this value in} -\frac{1}{3sin^{3}(u)}+C\\ \Rightarrow \ -\frac{x^{3}}{3\left(x^{2}-1 \right)^\frac{3}{2}}+C\\ {/eq}


Learn more about this topic:

Loading...
What is the Derivative of xy? - How-To & Steps

from

Chapter 7 / Lesson 18
112K

Advanced math students need to know how to take the derivative of the function xy. Discover the steps, solution, and applications for solving this type of equation.


Related to this Question

Explore our homework questions and answers library