Copyright

Evaluate the integral.

{eq}\displaystyle \int_0^3 \dfrac{x^2 + x + 1}{ (x+1)^2(x+2) } \ dx {/eq}

Question:

Evaluate the integral.

{eq}\displaystyle \int_0^3 \dfrac{x^2 + x + 1}{ (x+1)^2(x+2) } \ dx {/eq}

Partial Fraction:


The operation or the process of conversion of rational fractions into the polynomial one is called the partial fraction method with the help of the constants represented by {eq}A{/eq} , {eq}B{/eq} and so on like this.

Answer and Explanation: 1


Given:


  • Consider the integral {eq}\int\limits_0^3 {\frac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}dx} \cdots \left( 1 \right){/eq}


Use partial fractions to evaluate {eq}\frac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}{/eq} and simplify it as:


{eq}\begin{align*} \frac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} &= \frac{A}{{x + 2}} + \frac{B}{{x + 1}} + \frac{C}{{{{\left( {x + 1} \right)}^2}}} \cdots \left( a \right)\\ {x^2} + x + 1 &= A{\left( {x + 1} \right)^2} + B\left( {x + 2} \right)\left( {x + 1} \right) + C\left( {x + 2} \right)\\ {x^2} + x + 1 &= \left( {A + B} \right){x^2} + \left( {2A + 3B + C} \right)x + \left( {A + 2B + 2C} \right) \cdots \left( 2 \right) \end{align*}{/eq}


Comparing the coefficients of {eq}{x^2}{/eq} , coefficients of {eq}x{/eq} and the constant term in equation {eq}\left( 2 \right){/eq} as follows:


{eq}\begin{align*} A + B &= 1\\ 2A + 3B + C &= 1\\ A + 2B + 2C &= 1 \end{align*}{/eq}


From {eq}A + B = 1{/eq} , substitute {eq}A = 1 - B{/eq} into {eq}2A + 3B + C = 1{/eq} and {eq}A + 2B + 2C = 1{/eq} as:


{eq}\begin{align*} 2 - 2B + 3B + C &= 1\\ 2 + B + C &= 1\\ B + C &= - 1 \end{align*}{/eq}


And,

{eq}\begin{align*} 1 - B + 2B + 2C &= 1\\ 1 + B + 2C &= 1\\ B + 2C &= 0\\ B &= - 2C \end{align*}{/eq}


Substitute {eq}B = - 2C{/eq} into {eq}B + C = - 1{/eq} as:


{eq}\begin{align*} - 2C + C &= - 1\\ - C &= - 1\\ C &= 1 \end{align*}{/eq}


Substitute {eq}C = 1{/eq} into {eq}B = - 2C{/eq} , we get {eq}B = - 2{/eq} .


Substitute {eq}B = - 2{/eq} into {eq}A = 1 - B{/eq} , we get {eq}A = 3{/eq} .


Substitute {eq}A = 3{/eq} , {eq}B = - 2{/eq} and {eq}C = 1{/eq} into equation {eq}\left( a \right){/eq} as:


{eq}\begin{align*} \frac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} &= \frac{3}{{x + 2}} + \frac{{\left( { - 2} \right)}}{{x + 1}} + \frac{1}{{{{\left( {x + 1} \right)}^2}}}\\ &= \frac{3}{{x + 2}} - \frac{2}{{x + 1}} + \frac{1}{{{{\left( {x + 1} \right)}^2}}} \end{align*}{/eq}


Finally substitute {eq}\frac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} = \frac{3}{{x + 2}} - \frac{2}{{x + 1}} + \frac{1}{{{{\left( {x + 1} \right)}^2}}}{/eq} into equation {eq}\left( 1 \right){/eq} and integrate it as:


{eq}\begin{align*} \int\limits_0^3 {\frac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}dx} &= \int\limits_0^3 {\frac{3}{{x + 2}}dx} - \int\limits_0^3 {\frac{2}{{x + 1}}dx} + \int\limits_0^3 {\frac{1}{{{{\left( {x + 1} \right)}^2}}}dx} \\ &= 3\left[ {\ln \left| {x + 2} \right|} \right]_0^3 - 2\left[ {\ln \left| {x + 1} \right|} \right]_0^3 + \left[ {\frac{{ - 1}}{{x + 1}}} \right]_0^3\\ &= 3\ln 5 - 3\ln 2 - 2\ln 4 + 2\ln 1 - \frac{1}{4} + 1\\ &= 3\ln 5 - 3\ln 2 - 2\ln 4 + \frac{3}{4} \end{align*}{/eq}


On further simplification we get:


{eq}\begin{align*} \int\limits_0^3 {\frac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}dx} &= 3\ln 5 - 3\ln 2 - 2\ln 4 + \frac{3}{4}\\ &= 3\left( {\ln 5 - \ln 2} \right) - 2\ln 4 + \frac{3}{4}\\ &= 3\ln \frac{5}{2} - 2\ln 4 + \frac{3}{4} \end{align*}{/eq}


Thus, the solution of the integral is {eq}3\ln \frac{5}{2} - 2\ln 4 + \frac{3}{4}{/eq} .


Learn more about this topic:

Loading...
How to Integrate Functions With Partial Fractions

from

Chapter 13 / Lesson 10
4.6K

Learn about integration by partial fractions. Explore how to make partial fractions and then how to integrate fractions. See examples of integrating fractions.


Related to this Question

Explore our homework questions and answers library