Copyright

Evaluate the integral.

{eq}\displaystyle \int_0^1 \dfrac {x^2 + x + 1} {(x + 1)^2 (x + 2)}\ dx {/eq}

Question:

Evaluate the integral.

{eq}\displaystyle \int_0^1 \dfrac {x^2 + x + 1} {(x + 1)^2 (x + 2)}\ dx {/eq}

Partial Fraction Decomposition:

Partial fraction decomposition/expansion is a way to expand a complex rational expression. In simple words, we break a complex rational expression into various parts. It provides various rules to break rational expression. The following integration formula helps us to solve the given definite integral problem.

$$\begin{align*} \int {{{\left( {x \pm a} \right)}^n}} &= \dfrac{{{{\left( {x \pm a} \right)}^{n + 1}}}}{{n + 1}} + C\\[0.3cm] \int {\dfrac{{dx}}{{x \pm a}}} &= \ln \left| {x \pm a} \right| + C\\[0.3cm] \int\limits_n^m {f\left( x \right)} \;dx &= F\left( m \right) - F\left( n \right) \end{align*} $$

Answer and Explanation: 1

Given Data:

  • The given definite integral is {eq}\displaystyle \int\limits_0^1 {\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}} \;dx {/eq}.


Apply the partial fraction decomposition method to expand the integrand.

$$\begin{align*} \dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} &= \dfrac{A}{{x + 1}} + \dfrac{B}{{{{\left( {x + 1} \right)}^2}}} + \dfrac{C}{{x + 2}}\\[0.3cm] \dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}} &= \dfrac{{A\left( {x + 1} \right)\left( {x + 2} \right) + B\left( {x + 2} \right) + C{{\left( {x + 1} \right)}^2}}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}\\[0.3cm] {x^2} + x + 1 &= A\left( {x + 1} \right)\left( {x + 2} \right) + B\left( {x + 2} \right) + C{\left( {x + 1} \right)^2}\\[0.3cm] {x^2} + x + 1 &= A\left( {{x^2} + 3x + 2} \right) + B\left( {x + 2} \right) + C\left( {{x^2} + 2x + 1} \right)\\[0.3cm] {x^2} + x + 1 &= \left( {A + C} \right){x^2} + \left( {3A + B + 2C} \right)x + \left( {2A + 2B + C} \right) \end{align*} $$

Compare the coefficient of both sides.

$$\begin{align*} A + C &= 1 \Leftrightarrow A = 1 - C \Leftrightarrow A = - 2\\[0.3cm] 3A + B + 2C &= 1 \Leftrightarrow 3\left( {1 - C} \right) + B + 2C = 1 \Leftrightarrow - C + B = - 2 \Leftrightarrow B = - 2 + C \Leftrightarrow B = 1\\[0.3cm] 2A + 2B + C &= 1 \Leftrightarrow 2\left( {1 - C} \right) + 2\left( { - 2 + C} \right) + C = 1 \Leftrightarrow - 2 + C = 1 \Leftrightarrow C = 3 \end{align*} $$

So,

$$\begin{align*} \int\limits_0^1 {\dfrac{{{x^2} + x + 1}}{{{{\left( {x + 1} \right)}^2}\left( {x + 2} \right)}}} \;dx &= \int\limits_0^1 {\left( {\dfrac{{ - 2}}{{x + 1}} + \dfrac{1}{{{{\left( {x + 1} \right)}^2}}} + \dfrac{3}{{\left( {x + 2} \right)}}} \right)} \;dx\\[0.3cm] &= \left[ { - 2\ln \left| {x + 1} \right| + \left( {\dfrac{{{{\left( {x + 1} \right)}^{ - 2 + 1}}}}{{ - 2 + 1}}} \right) + 3\ln \left| {x + 2} \right|} \right]_0^1\\[0.3cm] &= \left[ { - 2\ln \left| {x + 1} \right| - \dfrac{1}{{x + 1}} + 3\ln \left| {x + 2} \right|} \right]_0^1\\[0.3cm] &= \left( { - 2\ln \left| 2 \right| - \dfrac{1}{2} + 3\ln \left| 3 \right|} \right) - \left( { - 2\ln \left| 1 \right| - 1 + 3\ln \left| {0 + 2} \right|} \right)\\[0.3cm] &= - 2\ln \left( 2 \right) - \dfrac{1}{2} + 3\ln \left( 3 \right) + 0 + 1 - 3\ln \left( 2 \right)\\[0.3cm] &= - 5\ln \left( 2 \right) + 3\ln \left( 3 \right) + \dfrac{1}{2} \end{align*} $$

Thus, the solution of the given definite integral is {eq}- 5\ln \left( 2 \right) + 3\ln \left( 3 \right) + \dfrac{1}{2} {/eq}.

Learn more about this topic:

Loading...
Partial Fraction Decomposition: Rules & Examples

from

Chapter 3 / Lesson 25
32K

Learn about how to carry out partial fraction decomposition with polynomial fractions. Discover example equations and walkthroughs of partial fraction decomposition.


Related to this Question

Explore our homework questions and answers library