Evaluate the integral {eq}\int \frac{1}{\sqrt{x^2-16}}\mathrm{d}x {/eq} using trigonometric substitution.

Question:

Evaluate the integral {eq}\int \frac{1}{\sqrt{x^2-16}}\mathrm{d}x {/eq} using trigonometric substitution.

Trigonometric Substitution:

The trigonometric substitutions that are effective for the given radical expressions because of the specified trigonometric identities are given as:

{eq}\displaystyle{ \left. \begin{array} { l l } { \sqrt { a ^ { 2 } - x ^ { 2 } } } & { x = a \operatorname { sin } \theta } \\ { \sqrt { a ^ { 2 } + x ^ { 2 } } } & { x = a \operatorname { tan } \theta } \\ { \sqrt { x ^ { 2 } - a ^ { 2 } } } & { x = a \operatorname { sec } \theta } \end{array} \right. }{/eq}

Important identity:

{eq}\displaystyle{ \operatorname { sec } ^ { 2 } \theta - 1 = \operatorname { tan } ^ { 2 } \theta }{/eq}

and the integral of:

{eq}\displaystyle{ \int \operatorname { sec } x d x = \operatorname { ln } | \operatorname { sec } x + \operatorname { tan } x | + C }{/eq}

Answer and Explanation: 1

Become a Study.com member to unlock this answer!

View this answer

We have,

{eq}\displaystyle{ \int \frac{1}{\sqrt{x^2-16}}\mathrm{d}x }{/eq}

Substitute {eq}\displaystyle{ x = 4 \operatorname { sec } \theta ...

See full answer below.


Learn more about this topic:

Loading...
Understanding Trigonometric Substitution

from

Chapter 13 / Lesson 11
8K

What is trig substitution for integrals? See examples to understand integration by trigonometric substitution using the three trig substitution identities.


Related to this Question

Explore our homework questions and answers library