Evaluate the following integral.

{eq}\displaystyle \int \dfrac { \cot x \ dx }{ \csc x + 16 \sin x} {/eq}

Question:

Evaluate the following integral.

{eq}\displaystyle \int \dfrac { \cot x \ dx }{ \csc x + 16 \sin x} {/eq}

Anti-Derivative:

The anti-derivative is an operation that can be performed on many functions. An anti-derivative gets a function whose derivative is the function whose anti-derivative is taken. In other words, the anti-derivative is an opposite process to differentiation or taking the derivative.

Answer and Explanation: 1


Given:

{eq}\displaystyle \int\ \frac{\cot\ x}{\csc\ x + 16\sin\ x}\ dx {/eq}

Expand the cotangent term. Recall:

{eq}\displaystyle \cot\ x = \frac{\cos\ x}{\sin\ x} {/eq}

{eq}\displaystyle \int\ \frac{\cot\ x}{\csc\ x + 16\sin\ x}\ dx = \int\ \frac{\cos\ x}{\sin\ x(\csc\ x + 16\sin\ x)}\ dx {/eq}


{eq}\displaystyle \int\ \frac{\cot\ x}{\csc\ x + 16\sin\ x}\ dx = \int\ \frac{\cos\ x}{\sin\ x\csc\ x + 16\sin^2\ x}\ dx {/eq}

Recall that:

{eq}\displaystyle \sin\ x\csc\ x = 1 {/eq}

Therefore,

{eq}\displaystyle \int\ \frac{\cot\ x}{\csc\ x + 16\sin\ x}\ dx = \int\ \frac{\cos\ x}{1 + 16\sin^2\ x}\ dx {/eq}

Let:

{eq}\displaystyle u = 4\sin\ x {/eq}

{eq}\displaystyle du = 4\cos\ x\ dx {/eq}

Or:

{eq}\displaystyle \frac{1}{4}\ du = \cos\ x\ dx {/eq}


In terms of u, we can write this integral as:

{eq}\displaystyle \int\ \frac{\cot\ x}{\csc\ x + 16\sin\ x}\ dx = \frac{1}{4}\int\ \frac{1}{1+ u^2}\ du {/eq}

This is a standard integral:

{eq}\displaystyle \int\ \frac{1}{1+ u^2}\ du = \tan^{-1}\ u + C {/eq}

Therefore,

{eq}\displaystyle \int\ \frac{\cot\ x}{\csc\ x + 16\sin\ x}\ dx = \frac{1}{4}\tan^{-1}\ u + C {/eq}

Return the definition of u to get:

{eq}\displaystyle \boxed{\int\ \frac{\cot\ x}{\csc\ x + 16\sin\ x}\ dx = \frac{1}{4}\tan^{-1}\ (4\sin\ x) + C} {/eq}


Learn more about this topic:

Loading...
Integration Problems in Calculus: Solutions & Examples

from

Chapter 13 / Lesson 13
26K

Learn what integration problems are. Discover how to find integration sums and how to solve integral calculus problems using calculus example problems.


Explore our homework questions and answers library