Evaluate the following integral.

{eq}\displaystyle \int e^x \cosh x \ dx {/eq}


Evaluate the following integral.

{eq}\displaystyle \int e^x \cosh x \ dx {/eq}

Cosine Hyperbolic Function as Integrand:

The cosine hyperbolic function is defined as the ratio of the sum of exponential functions {eq}e^x {/eq} and {eq}e^{-x} {/eq} over the integer value {eq}2 {/eq}. The product rule of exponential expression for the simplification of the integral expression is:

{eq}e^a\cdot e^b=e^{a+b} {/eq}

Answer and Explanation: 1

Given integral:

{eq}\displaystyle \int e^x \cosh x \ dx=?\\[2ex] {/eq}

The cosine hyperbolic function in exponential form is:

{eq}\cosh x=\dfrac{e^x+e^{-x}}{2}\\[2ex] {/eq}

Substitute the above exponential formula in the integral expression and simplify it.

{eq}\begin{align*} \int e^x \cosh x \ dx&=\int e^x \left ( \frac{e^x+e^{-x}}{2} \right ) \ dx\\[2ex] &=\frac{1}{2}\cdot \int e^x (e^x+e^{-x})\ dx\\[2ex] &=\frac{1}{2}\cdot \int (e^x \cdot e^x+e^x \cdot e^{-x})\ dx\\[2ex] &=\frac{1}{2}\cdot \int (e^{x+x}+e^{x-x})\ dx&\left [ \because e^a \cdot e^b=e^{a+b} \right ]\\[2ex] &=\frac{1}{2}\cdot \int (e^{2x}+e^{0})\ dx\\[2ex] &=\frac{1}{2}\cdot \int (e^{2x}+1)\ dx&\left [ \because e^{0}=1 \right ]\\[2ex] \end{align*} {/eq}

Solve each anti-derivative using the common integral formulas.

{eq}\begin{align*} \frac{1}{2}\cdot \int (e^{2x}+1)\ dx&=\frac{1}{2}\cdot\left(\int e^{2x}\ dx+\int 1\ dx\right)\\[2ex] &=\frac{1}{2}\cdot\left(\frac{e^{2x}}{2}+x\right)+C\\[2ex] &=\frac{e^{2x}}{4}+\frac{x}{2}+C\\[2ex] \end{align*} {/eq}

Thus, the value of the integral expression is {eq}\boxed{\displaystyle \frac{e^{2x}}{4}+\frac{x}{2}+C} {/eq}.

Learn more about this topic:

Integration Problems in Calculus: Solutions & Examples


Chapter 13 / Lesson 13

Learn what integration problems are. Discover how to find integration sums and how to solve integral calculus problems using calculus example problems.

Related to this Question

Explore our homework questions and answers library