# Evaluate integral e^5 x + 8 / e^5 x dx. a. x - 8 / 5 e^-5 x + c. b. x + 8 / 5 e^5 x + c. c. 1 - 8...

## Question:

Evaluate {eq}\displaystyle \int \dfrac {e^{5 x} + 8} {e^{5 x}}\ dx {/eq}.

a. {eq}\displaystyle x - \dfrac 8 5 e^{-5 x} + c {/eq}.

b. {eq}\displaystyle x + \dfrac 8 5 e^{5 x} + c {/eq}.

c. {eq}\displaystyle 1 - \dfrac 85 e^{-5 x} + c {/eq}.

d. {eq}\displaystyle 1 + \dfrac 8 5 e^{5 x} + c {/eq}.

## Integration of Exponentials:

An exponential function written in the dneominator of a rational function such as {eq}\dfrac{1}{e^{px}} {/eq} and we need its anti-derivative. Then, we may try to rewrite this expression with a negative exponent and solve the integration using the common formula shown below:

{eq}\int e^{-px}\ dx=\dfrac{e^{-px}}{-p}+C {/eq}

• Where {eq}C {/eq} is the constant of integration.

## Answer and Explanation: 1

Become a Study.com member to unlock this answer!

Given:

{eq}\displaystyle \int \dfrac{e^{5 x} + 8} {e^{5 x}}\ dx=?\\[2ex] {/eq}

Rewrite the above rational function as,

{eq}\begin{align*} \int\fr...

See full answer below. 