Consider the production function F(l,K)=3l^{.25}K^{.75} a) Find the cost-minimizing bundle and...
Question:
Consider the production function
{eq}F(l,K)=3l^{.25}K^{.75} {/eq}
a) Find the cost-minimizing bundle and the long-run total cost if w = 64 and v = 1 and total output = q = 36.
b) Change the price of capital to 3, and the price of labor to 192. Find the cost-minimizing bundle and the long-run total cost.
Constrained Cost Minimization:
Costs can be minimized constrained to the level of output. This occurs when the isocost line is tangent to the isoquant curve. This is where optimal combination of inputs minimizes the costs.
Answer and Explanation: 1
Become a Study.com member to unlock this answer! Create your account
View this answer(a).
We set up a cost minimization as the following:
{eq}min\,\,C=64l+k\\s.t\,\,\,3l^{0.25}k^{0.75} {/eq}
Set up a Lagrangian equation:
{eq}Z=64l...
See full answer below.
Ask a question
Our experts can answer your tough homework and study questions.
Ask a question Ask a questionSearch Answers
Learn more about this topic:

from
Chapter 1 / Lesson 7Learn the definition of a production function in economics, understand the definition of a Cobb-Douglas production function and its formula, and explore some examples of Cobb-Douglas production function.
Related to this Question
- Suppose that a firm's production function is q = 5x^{0.5} in the short run, where there are fixed costs of $1,000, and x is the variable input whose cost is$1250 per unit. The total cost of producing a level of output q is C(q) = 1,000 + \frac{1250q^2}{25
- Suppose a firm's production function is given by Q = 2L + K. Also, the price of Labor, w = 10, and the price of Capital, r = 4. If the firm minimizes the cost of production, how much will it cost the
- Assume a firm has a production function Q = 2 S L 5 K 5 and the price of labor is $3 and the price of capital is $12. a) What is the minimum cost of producing 1,250 units of output? b) Now show t
- Assume a firm has a production function Q = 25 L 5 K 5 and the price of labor is $3 and the price of capital is $12. a) What is the minimum cost of producing 1,250 units of output? b) Now show tha
- Find the production maximizing quantities of capital and labor for the function Q = 4KL + 3L^2. The total cost function is TC = 3K + 4L. The firm budgets for total costs of $400. Write the Langragia
- Consider a firm with production function f(L,K)=3L1/3K2/3. Assume that capital is fixed at K=1. Assume also that the price of capital r=5 and the price of labor w=3. Then, the variable cost of producing q units is what?
- Consider a profit-maximising, price-taking firm that only uses capital as input at a cost of v per unit. Its production function is given by f(k) = 11 - \frac{1}{1 + k}. What is its cost function (whe
- Consider a firm with the production function f(L,K)=L^{1/5}K^{4/5}. Assume that the price of capital r=3 and the price of labor w=2. If L^* and K^* are the amounts used by the firm to produce q units of output when both L and K are variable, then what is
- Consider a firm with production function f(L,K)=3L+8K. Assume that capital is fixed at K=12. Assume also that the price of capital r=10 and the price of labor w=3. Then, the average cost of producing q units is what?
- A firm has a total cost function of: TC(Q) = 100 + 100Q + Q^3/100, where 'Q' is the firm's output level. A) Find the function that gives the average cost of production. B) What output level minimizes
- Using the production function (ie: q = (K^{1/2} + L^{1/2})^2) suppose that the firm is now operating in the long-run. a) Solve for the long-run cost function (i.e. total costs as a function of input
- Suppose the production function is Q = 20(K^0.5 L^0.5) and the value of capital is 100. A.) Calculate the total product for the following values of labour input: 1, 5, 10, 20, 40, 50, 80, 100, 150, 2
- Suppose we are given a profit function Q = 12L0.5K0.5. The price of labor (L) is $6 per unit and the price of capital (K) is $6 per unit. The firm is interested in the optimal mix of inputs to minimize the cost of producing any level of output Q. In the o
- Suppose the production function is Q = 20(K^0.5 L^0.5) and the value of capital is 100. A.) Calculate the total product for the following values of labor input: 1, 5, 10, 20, 40, 50, 80, 100, 150, 200
- Consider a firm with production function f(L,K)=3L1/3K2/3. Assume that capital is fixed at K=1. Assume also that the price of capital r=5 and the price of labor w=3. Then, the average fixed cost of producing q units is what?
- A firm's production function is given by Q = 2L - L^2 + K. The price of labor is w > 0 and the price of capital is r > 0. Assuming the firm uses both labor and capital, derive the long-run total cost function.
- Suppose that a firm's production function is q = 10L1/2K1/2. The cost of a unit of labor is $20 and the cost of a unit of capital is $80. a. Derive the long-run total cost curve function TC(q). b. The firm is currently producing 100 units of output. Find
- Consider the following production function: Q = 10KL. If w = 25, r = 75, and c = 1200, find the minimum cost combination of capital and labor to produce a given level of output.
- Suppose we are given a profit function Q = 12L^.5K^.5. The price of labor is $6 per unit and the price of capital (K) is $7 per unit. The firm is interested in the optimal mix of inputs to minimize the cost of producing any level of output Q. In the optim
- Consider a firm whose production function is Q = 0.4K^0.5L^0.5. Its level of capital is fixed at 100 units, the price of labor is PL = $4 per unit, and the price of capital is PK = $2 per unit. Given this information, the firm s total cost function is A)
- A firm produces output with the production function F(K,L) = K^{1/2}L^{1/2}. The price of capital is p_K = 10 and the price of labor is p_L = 40. Find the cost-minimizing input bundle for producing Q = 50 in the long run.
- A firm's production function is Q = min(L, 4K). The price of labor is w > 0 and the price of capital is r > 0. Suppose capital is fixed at K = 2 in the short run. Derive the short-run total cost function. Draw the short-run expansion path. Label your gr
- Suppose that a firm's production function is Q = min{K, L}. Currently, the wage is w = 8 and the cost of capital is r = 8. (a) What is the minimum cost method of producing Q = 40 units of
- Consider the following cost minimization problem. A firm minimizes total cost given by TC = wL + rK, which is subject to an output constraint as given by the production function of y = f(K,L) = 8K^0.5
- A firm's production function is Q = min(L, 4K). The price of labor is w > 0 and the price of capital is r > 0. Derive the long-run total cost function. Draw the long-run expansion path. Label your graph clearly.
- For the production function q= K^0.2 L^0.3 use a lagrangian to solve for the cost minimizing input bundle to produce 100 units of output if v=10 and w=15. What is the marginal cost of production at th
- Suppose a firm has a production function given by Q = L1/2K1/2. The firm can purchase labor, L, at a price w = 8, and capital, K, at a price of r = 2. a) What is the firm's total cost function, TC(Q)? b) What is the firm's marginal cost of production?
- A firm's production function is given by Q = 2L - L^2 + K. The price of labor is w > 0 and the price of capital is r > 0. Assuming the firm uses both labor and capital. Suppose w = 1 and r = 1. At what output level is K = 3 a cost-minimizing choice of cap
- Suppose the cost function is C(Q) = 50 + Q - 10Q2 + 2Q3. What is the total cost of producing 10 units?
- Output is produced according to Q = 4LK, where L is the quantity of labor input and K is the quantity of capital input. The price of K is $10 and the price of L is $5. Determine the cost minimizing co
- Consider the production function Q = (0.5K^{1/3} + 0.5L^{1/3})^3 . a. Prove that this production function exhibits constant returns to scale. b. Suppose the firms want to minimize the cost of produc
- Consider the following production function: Q = 100K^(0.4)L^(0.6). The wage rate is $12/hr., and the rental rate on capital is $8/hr. A. Compute the minimum cost of producing 200 units of output.
- Suppose the production function is q = 12L0.25K0.75. Determine the long-run capital-to-labor ratio \frac{K}{L} if the cost of a unit of capital ''(r)'' is three times the cost of a unit of labor ''(w)''.
- Suppose the production function is q = 12 L^{0.25} K^{0.75}. Determine the long-run capital-to-labor ratio (K/L) if the cost a unit of capital (r) is three times the cost of a unit of labor (w).
- Consider a firm with the production function f(L,K) = L^{0.5}K^{0.5}. The wage rate and rental rate on capital are w and r, respectively. a. Use the Lagrangian for cost minimization to do derive the long-run cost function for this firm. b. Suppose the
- Suppose that a firm had a production function given by q = L0.25K0.75. The wage rate (w) is $5 and the rental rate (r) is $10. Calculate the amount of labor the firm would hire when it produces 400 units of output in a cost-minimizing way. (Round to the n
- A firm s production function is Q = min(L, 4K). The price of labor is w > 0 and the price of capital is r > 0. Derive the demand function for labor and capital respectively. How does the demand for capital change with the price of capital?
- Suppose a production function is q = K^(1/2)L^(1/3) and in the short run capital (K) is fixed at 100. If the wage is $10 and the rental rate on capital is $20, the short run marginal cost is _____.
- 1. Suppose that a firm's production function is q = 10L^{1/2}K^{1/2}. The cost of a unit of labor is $20 and the cost of a unit of capital is $80.a. If the firm wishes to produce 100 units of output,
- Suppose a production function is q = K^(1/2) L^(1/3) and in the short run capital K is fixed at 100. If the wage is $10 and the rental rate on capital is $20, the fixed cost is _____.
- A firm's production function is given by Q = 2L - L^2 + K. The price of labor is w > 0 and the price of capital is r > 0. Assuming the firm uses both labor and capital. Suppose w = 1 and r = 1. At what output level is L = 0.5 a cost-minimizing choice of l
- For the production function below calculate the least cost of producing one unit of output for the given input prices. Q=X_{1}+2X_{2}, Px_{1}=1, and Px_{2}=4 Q=min(K,L), r=$5, and w=$1
- Suppose the cost function is C(Q) = 50 - Q + 2Q^2. The average total cost of producing 10 units is: (blank).
- Suppose the production function is y = 2K^{0.5}L^{0.5} and in the short-run K is fixed at K = 16. The market wage rate w=1 and price of capital r=4. The total costs C of a firm is: C = 4K + L. a. Find what is the short-run total cost function C (C as a fu
- Consider the production function: Q = K^(1/3) L^(2/3) where Q is quantity of output, K is capital, and L is labor. Does this function exhibit increasing, diminishing, or constant returns to scale?
- Suppose a firm's production function is Q = 4K0.5 L0.5. Its level of capital is fixed at 4 units, the price of labor is PL = $16 per unit, and the price of capital is PK = $20 per unit. The firms aver
- 2. Consider a firm with a production function F(l,k)=l^(3/4)k^(1/4), who faces input prices w = 2 and v = 54 Find the long run cost total cost when q=540
- A firm has a production function, q = L^{0.6}K^{0.4}. It wants to minimize cost for a given production q. The wage rate and rental rate on capital are w and r, respectively. a. Write the Lagrangian ex
- The long-run production function for a firm's product is given by q = f(K; L) = 5 K L. The price of capital is $10 and the price of labor is $15. a. Suppose the firm wishes to produce an output of 500. List 5 combinations of capital and labor that the fi
- A firm has a production function given by Q = 10(K^{.25})(L^{.25}). Suppose that each unit of capital costs R and each unit of labor costs W. a.) Derive the long-run demands for capital and labor. b.) Derive the total cost curve for this firm. c.) Deri
- Suppose that a firm's production function is q = 10 L^0.5 K^0.5. This means that the marginal rate of technical substitution is K/L.The cost of a unit of labor is $20 and the cost of a unit of capital is $80. The firm wants to produce 130 units of output.
- A firm's product function is Q = 5L^{0.5}K^{0.5}. Labor costs $40 per unit and capital costs $10 per unit. K = 16 in the short run. Determine the level of output that minimizes SAC for the firm. A. 40 B. 80 C. 113 D. 135
- Consider a firm with the production function, q=(K^1/2+L^1/2)^2. In the short-run, the level of capital is fixed. a) Determine the equations for MPL and APL. b) Solve for the short-run cost function (
- Suppose a firm has a production function y=f(x_1, x_2) = x_1^{1/2} x_2^{1/2}. The price of factor 1 is w_1 = 16, and the price of factor 2 is w_2 = 4. Calculate the short-run cost function when x_1 =
- Consider a firm with production function f(L,K) = 2L + 6K. Assume that capital is fixed at K = 6. Also assume that the price of capital r = 10 and the price of labor w = 2. Then, what is the marginal
- If the total cost function for a product is given by: TC = 1500 + 5 Q - 10 Q^2 + Q^3. And if the output level is 100 unit, derive and find the value of: a. The fixed cost (FC), b. The variable cost (VC), c. The average cost (AC), d. The average fixe
- Given a production function, F(l,k)=3l^(1/3)k^(2/3) and a level of output q = 324, answer the following: a) Find the long run minimum cost if the input prices are w = 1 and v = 4
- Consider the production function Q = K^{0.5}L^{1.5} where K is capital and L is labor. Suppose capital is fixed at 625 in the short-run. What is the short-run total product?
- What is the cost-minimizing level of capital that the firm must use to produce a target level of output, Q = 1600? A firm's production process uses labor, L, and capital, K, and materials, M, to produce an output, Q according to the function Q= KLM, where
- Suppose a firms production function is Q = 2K0.5 L0.5. Its level of capital is fixed at 9 units, the price of labor is PL = $12 per unit, and the price of capital is PK = $10 per unit. The firms avera
- A firm's production function Q = 20L^{0.5}K^{0.4}. Labour costs $100 per unit and capital costs $100. The firm sets a production target of 100 units. a. Show or explain whether the production function
- Suppose a firm can use either capital (K) or labor (L) in a production process. The firms production function is given by Q = 5L + 15K. The price of capital is $20 per unit and the price of labor is $8 per unit. a. What is the firm's total cost function?
- Suppose that the firm's production function is given by Q = 10K(L)^1/3. The firm's capital is fixed at K. What amount of labor will the firm hire to solve its short-run cost-minimization problem?
- Suppose the production function for a firm is given by q = 8L + 2K. If the firm currently has 20 units of capital (K) and 10 units of labor (L), then calculate the Marginal Rate of Technical Substitution (MRTS_(LK)).
- Suppose the production function for a firm is given by q = 4L + 2K. If the firm currently has 20 units of capital (K) and 10 units of labor (L), then calculate the marginal rate of technical substitution (MRTSLK).
- A firm is producing output Q using a mix of capital K and labor L. The production function is given by . A unit of capital costs $3 and a unit of labor costs $9. The firm wants to minimize the total c
- The production function for a product is given by q = K1/2L1/4 where K is capital, L is labor and q is output. a. Find the marginal products of labor and capital. b. Is the marginal product of labor increasing or decreasing with labor? Is the marginal p
- Consider the following short run production function. Q=6L-0.4L^3 Determine: a. Marginal product function b. Average product function c. Find the value of L that maximizes Q Explain the relationship between long run production and long run cost.
- Suppose that a production function of a firm is given by Q= min{2L,K}, where Q denotes output, K capital, and L labor. Currently the wage is w=$10, and the rental rate of capital is r=$15. a. What is the cost and method of producing Q=20 units of capital
- Consider a firm with production function f(L,K)=L^1/7K^6/7 (cost minimization for this firm is characterized by the tangency rule). Assume also that the price of capital r=3 and the price of labor w=2
- Suppose the cost function is C(Q) = 50 + Q - 10Q2 + 2Q3. What is the variable cost of producing 10 units?
- Given a production function F(, ) , and a level of output q = 324, answer the following: a) Find the long run minimum cost if the input prices are w = 1 and v = 4.
- Consider the production decision in the long run with production function Q = K^0.4 * L^0.4 , with a per-unit cost of capital K and per- unit cost of labor L both equal to 10.
- Suppose a firm's production function is given by the equation Q = 12L^.5K^.5 . This firm operates in the short run where capital (K) is fixed at a quantity of 16. If the price per unit of the good is $1.9 and labor costs $10 per unit. Then the profit-maxi
- A firm has a production function of y = f(L, k) = ( sqrtL + sqrtk)^2 a) Find expressions for the marginal product of labor and capital (b) Find the cost function
- Consider a profit-maximizing firm that uses labor, L, as an input to produce its output, Q, according to the production function Q = L^1/2. Labor is paid an hourly wage w. The firm's total revenue is
- Assume that a firm's long-run average total cost (ATC) is constant. Which of the following functions, where Q is output; L is labor input; K is capital input, is more likely to represent the firm s production? Please explain briefly about your choice. (a
- The production function for the Gwilmo Firm can be written as Q = 9K^{1/2}L^{1/2}. 1. Graph the isoquant for Q = 1,350. 2. Assume K = 1,600 and L = 225. Calculate the marginal product of L. 3. Assume K = 1,600 and L = 225. Now, decrease L by one unit. By
- Suppose the production function for a firm is given by q = 4L0.75K0.25. If the firm currently has 10 units of capital (K) and 10 units of labor (L), then calculate the marginal rate of technical substitution (MRTSLK).
- Suppose that a firm's production function is q = 10L^{0.5}K^{0.5} . The cost of a unit of labor is $10/hour and the cost of capital is $40/hour, and the firm is currently producing q=1000 units
- Suppose the production function for a competitive firm is Q = K^.75L^.25. The firm sells its output at a price of $32 and can hire labor at a wage rate of $2. Capital is fixed at 1 unit. a. What is the profit-maximizing quantity of labor? b. If the price
- Consider the following production function: Q = F(L, K) = L^4 * K^7. A) Does this production function exhibit diminishing or increasing marginal rate of technical substitution of labor for capital? Show your work. B) Find the elasticity of substitution fo
- A factory produces output (Q) using capital (K) and labor (L) according to the production function Y(K,L)=K^{1/5}L^{4/5}. Let r denote the price per unit capital, and w denote the price per unit labor, so that the total expenditure on these factors is r_K
- Suppose a production function is q = K^(1/2)L^(1/3) and in the short run capital (K) is fixed at 100. If the wage is $10 and the rental rate on capital is $20, the short-run average cost is _____
- Suppose that a firm's production function is given by q = 10 K^0.5 L^0.5, prices of labor and capital are, w=$10, and r=$40 respectively. Find and Plot the long-run AC and MC curves.
- If output is produced according to Q = 5Lk (L is the quantity of labor and k is the quantity of capital), the price of K is $12, and the price of L is $6, then the cost minimizing combination of K and L capable of producing 4,000 units of output is A. L
- Consider a firm with two inputs, capital (K) and labor (L), with the price of capital Pk and the price of labor PL. The firm's production function is q(K, L) = 25KL. a. Write the firm's cost (as a function of K, L, Pk, PL). b. From the production function
- A firm's product function is Q = 5L^{0.5}K^{0.5}. Labor costs $40 per unit and capital costs $10 per unit. K = 16 in the short run. Determine the firm's short-run cost function. \text{A.}\; C = 160 + 2Q^2\\ \text{B.}\; C = 640 + Q^2/20\\ \text{C.}\; C = 1
- Consider the production function Q = K0.5L0.5 where K is capital and L is labor. Suppose labor is fixed at 169 in the short-run. What is the average total product?
- Suppose you are given the following total cost function: TC = 2000 + 15Q - 6Q2 + Q3 , where Q = units of output: Using this function: How much is TFC at an output of 2000 units? At 5000 units? How m
- A firm's product function is Q = 5L^{0.5}K^{0.5}. Labor costs $40 per unit and capital costs $10 per unit. K = 16 in the short run. Derive the long-run cost function for the firm. A. C = 4q B. C = 17q C. C = 8q D. C = 10q
- Suppose a firm produces an output measured in units Q. The cost of producing Q units is given by the cost function C(Q) = aQ^2 + bQ + c, where you can assume a 0,b 0,c 0. In Economics we also think about cost per unit (average cost) given by: AC(Q) = C(
- Consider the Production Function, Y = 25K1/3L2/3 (a) Calculate the marginal product of labor and capital (b) Does this production function exhibit constant/increasing/decreasing returns to scale? (
- Suppose a firms production function is Q = 0.2K0.5 L0.5. Its level of capital is fixed at 25 units, the price of labor is PL = $8 per unit, and the price of capital is PK = $4 per unit. The firms aver
- A firm's product function is Q = 5L^{0.5}K^{0.5}. Labor costs $40 per unit and capital costs $10 per unit. K = 16 in the short run. Suppose the production of a firm is Q = 5 + 2K + L. Which of the following statements is correct? A. The firm's production
- Suppose in the short run a firm's production function is given by Q = L^(1/2) x K^(1/2), and that K is fixed at K = 9. If the price of Labor, w = $12 per unit of Labor, what is the firm's Marginal Cost of production when the firm is producing 48 units of
- Write the equations for the marginal product of capital, marginal product of labor, and marginal rate of technical substitution for the long-run production function q = 5L^0.5K.
- Consider a firm that uses labor (L) and capital (K) to produce a general output (q) using the following production function: \\ q = K^{0.9}L^{0.1} \\ The firm seeks to produce q = 60 units for sale and faces prices for labor of w = 5 and capital of r = 6.
- Suppose a firms production function is given by, Q = L^{1/2}K^{1/2} and the Marginal Product of Labor and the Marginal Product of Capital are given by MPK= MPL = 1/2 L^{1/2}K^{-1/2}. (a) If the price
- Consider the production function: Q = 12L - 2L^2 where Q is quantity of output, and L is labor. What is the average product?