27. The titration of 80.0 mL of an unknown concentration H_3PO_4 solution requires 126 mL of...
Question:
27. The titration of 80.0 mL of an unknown concentration H_3PO_4 solution requires 126 mL of 0.218 M KOH solution. What is the concentration of the H_3PO_4 solution?
a. 1.03 M
b. 0.343 M
c. 0.114 M
d. 0.138 M
28. Commercial grade HCl solutions are typically 39.0% (by mass) HCl in water. Determine the molality of the HCl, if the solution has a density of 1.20 g/mL.
a. 39.0 m
b. 17.5 m
c. 6.39 m
d. 10.7 m
e. 9.44 m
29. The element that corresponds to the electron configuration 1s^22s^22p^63s^23p^64s^2de^5 _.
a. titanium
b. vanadium
c. chromium
Acid Base Titration:
Acid base titration is an analytical technique where a solution of known concentration is used to determine the concentration of the unknown solution. The volumes of both solutions are also known because they can be easily measured during the experiment.
Answer and Explanation: 1
Become a Study.com member to unlock this answer! Create your account
View this answerQuestion 27
c. 0.114 M
The reaction between {eq}H_3PO_4 {/eq} and KOH is
$$H_3PO_4 + 3KOH \rightarrow 2H_2O + K_3PO_4 $$
Now we will use the...
See full answer below.
Ask a question
Our experts can answer your tough homework and study questions.
Ask a question Ask a questionSearch Answers
Learn more about this topic:

from
Chapter 11 / Lesson 9Learn about strong acid - strong base titration. Understand strong acid - strong base reactions and how to find an unknown substance concentration, and see the curve.
Related to this Question
- A 5.20 mL sample of a H_3PO_4 solution of unknown concentration is titrated with a 9.800 times 10^{-2} M NaOH solution. A volume of 7.12 mL of the NaOH solution was required to reach the equivalence point. What is the concentration of the unknown H_3PO_4
- A 25.00 mL sample of an unknown H3PO4 solution is titrated with a 0.100 M NaOH solution. The equivalence point is reached when 26.33 mL of NaOH solution is added. What is the concentration of the unknown H3PO4 solution?
- A 22.0-mL sample of an unknown H3PO4 solution is titrated with a 0.110 M NaOH solution. The equivalence point is reached when 18.60 mL of NaOH solution is added. What is the concentration of the unknown H3PO4 solution?
- A 35.00 mL sample of an unknown H3PO4 solution is titrated with a 0.100 M NaOH solution. The equivalence point is reached when 26.28 mL of NaOH solution is added. What is the concentration of the unknown H3PO4 solution?
- A 14.3-mL sample of an H3PO4 solution is titrated with a 1.16 M NaOH solution. The neutralization reaction is complete when 34.6 mL of NaOH is added. What is the concentration of the H3PO4 solution (in M)?
- A) A 5.10 mL sample of an H_3PO_4 solution of unknown concentration is titrated with a 9.300 \times 10^{-2} M NaOH solution. A volume of 7.22 mL of the NaOH solution was required to reach the equivalence point. What is the concentration of the unknown H_3
- A 27.00 ml sample of an unknown H_3PO_4 solution is titrated with a 0.110 M NaOH solution. The equivalence point is reached when 25.78 ml of NaOH solution is added. What is the concentration of the unknown H_3PO_4 solution? The neutralization reaction is:
- A 33.00 mL sample of an unknown H3PO4 solution is titrated with a 0.110 M NaOH solution. The equivalence point is reached when 26.03 mL of NaOH solution is added. What is the concentration of the unknown H3PO4 solution? The neutralization reaction is H3P
- A 30.00 mL sample of an unknown H_3PO_4 solution is titrated with a 0.120 M NaOH solution. The equivalence point is reached when 25.23 mL of NaOH solution is added. What is the concentration of the unknown H_3PO_4 solution? The neutralization reaction is
- What is the concentration of the unknown H_3PO_4 solution? The neutralization reaction is H_3PO_4(aq) + 3NaOH(aq) --->3H_2O(l) + NaPO_4(aq)
- What is the molar concentration of 799.0 mL of an aqueous H3PO4 solution that required 0.02947 L of an 837 mM standard solution of NaOH for complete neutralization?
- A 25.0 mL sample of H3PO4 is titrated with NaOH. If 29.2 mL of 0.738 M NaOH is needed to reach the endpoint, what is the concentration (M) of the H3PO4 solution?
- A solution of 0.3044 M KOH is used to neutralize 16.00 mL of an H3PO4 solution. If 28.48 mL of the KOH solution is required to reach the endpoint, what is the molarity of the H3PO4 solution?
- If 38.19 mL of 0.084 M NaOH was dispensed to get to the endpoint of a titration of 25 mL of H3PO4, what was the initial concentration of H3PO4?
- A volume of 42.5ml 0.125M KOH is needed to neutralize completely 37.2ml of { H_3PO_4 } solution. Find the molar concentration of { H_3PO_4 }?
- A 29.30 mL sample of an H3PO4 (triprotic) solution is titrated with a 0.48 M NaOH solution. The equivalence point is reached when 45.70 mL of NaOH solution is added. What is the concentration of the H3PO4 solution?
- A 22.9 mL sample of H3PO4 (triprotic) solution is titrated with a 0.405 M NaOH solution. The equivalent point is reached when 44.1 mL of NaOH solution is added. What is the concentration of the H3PO4 solution?
- What is the molarity of an unknown H_3PO_4 acid if 10.00 mL of it was titrated with 0.103 M NaOH and 54mL of NaOH was required to reach the endpoint of the titration?
- A) A 25.00 mL sample of an unknown H3PO4 solution is titrated with a 0.100 M NaOH solution. The equivalence point is reached when 26.33 mL of NaOH solution is added. What is the concentration of the u
- A 29.30 mL sample of an H3PO4 solution is titrated with a 0.48 M NaOH solution. The equivalence point is reached when 45.70 mL of NaOH solution is added. What is the concentration of the H3PO4 solution?
- A 30.1 mL sample of H_3PO_4 solution is titrated with a 0.609 M NaOH solution. The equivalence point is reached when 50.1 mL of NaOH solution is added. What is the concentration H_3PO_4 solution?
- If 23.6 ml of 0.200 m NaOH is required to neutralize 10.00 ml of a H_3PO_4 solution , what is the concentration of the phosphoric acid solution?
- A 34.00 mL sample of an unknown H3PO4 solution is titrated with a 0.130 M NaOH solution. The equivalence point is reached when 26.98 mL of NaOH solution is added. What is the concentration of the unk
- A 5.00-mL sample of an H3PO4 solution of unknown concentration is titrated with a 0.1003 M NaOH solution. A volume of 6.55 mL of the NaOH solution was required to reach the endpoint. What is the conce
- A 9.00 mL sample of unknown concentration of phosphoric acid, H3PO4 , is titrated with 14.34 mL of 0.1110M Ca(OH)2, what is the concentration of H3PO4? Write the balanced equation for this process.
- A 30.5 mL sample of a KOH solution of unknown concentration requires 18.1 mL of a 0.100 M H2SO4 solution to reach the endpoint in a titration. What is the molarity of the KOH solution?
- A 27.5 mL sample of a KOH solution of unknown concentration requires 14.6 mL of 0.150 M H2SO4 solution to reach the endpoint in a titration. What is the molarity of the KOH solution?
- In a titration of 35 mL of 0.40 M H_3PO_4 with 0.30 M KOH solution, what volume (in mL) of KOH solution is needed to reach the last equivalence point (i.e., point in the titration where enough KOH has
- 3 mL of 0.15 M solution of NaOH was added in 10 mL of 0.05 M solution of H3PO4. Calculate the concentration of HPO42- ions.(pKas of phosphoric acid = 2.15; 7.2; 12.3).The 3 mL of 0.15 M solution of NaOH was added in 10 mL of 0.05 Msolution of H3PO4. Calcu
- What is the molarity of a solution of H_3PO_4 if 11.1 mL is neutralized by 33.2 mL of 0.161 M NaOH?
- A solution of 0.25 M NaOH is used to neutralize 25.0 mL of H3PO4 solution. If 33.0 mL of NaOH is required to reach the endpoint, what is the molarity of the H3PO4? a) 0.042 M b) 0.50 M c) 3.78 M d) 1.26 M e) 0.11 M
- If 175 ml of KOH of unknown concentration with a methyl red indicator present is titrated with [0.275 M] H_3PO_4, the yellow solution turns red after 29.6 ml of the H_3PO_4 is added. What is the molarity of the KOH solution?
- What is the molarity of a NaOH solution if 21.3 mL of the NaOH solution is neutralized by 10.4 mL of 6.10 M H_3PO_4?
- A triprotic acid, H3PO4, required 42.50 mL of 0.50 M NaOH to reach the endpoint. Calculate the concentration of the acid if 27.55 mL of the acid was used in the titration.
- Titration of a 15.0 mL solution of KOH requires 17.0 mL of 0.0250 M H2SO4 solution. What is the molarity of the KOH solution?
- Titration of a 23.0 mL solution of KOH requires 13.0 mL of 0.0250 M H2SO4 solution. What is the molarity of the KOH solution?
- Titration of a 11.0 mL solution of KOH requires 11.0 mL of 0.0270M H2SO4 solution. What is the molarity of the KOH solution?
- What is the molarity of a KOH solution if 42058 mL of KOH are required to neutralize 25.00 mL of 0.1350 M H_3PO_4? (Write the balanced equation for the reaction.)
- What is the molarity of KOH if 19.65 mL of 2.000 M HNO_3 is required in a titration to neutralize 35.00 mL of a solution of KOH? a. 1.000 M b. 1.123 M c. 2.000 M d. 2.233 M
- A 25.0 mL sample of H3PO4 requires 50.0 mL of 1.50 M NaOH for complete neutralization. What is the molarity of the acid?
- A solution of 0.190 M NaOH is used to titrate 53.5 mL of a 0.0324 M H_3PO_4 solution. What volume, in milliliters, of the NaOH solution is required? H_3PO_4(aq)+3NaOH(aq)\to 3H_2O(l)+Na_3PO_4(aq)
- A solution of 0.24 M NaOH is used to titrate 50.0 mL of a 0.0224 M H_3PO_4 solution. What volume, in milliliters, of the NaOH solution is required? H_3PO_2(aq) + 3NaOH(aq) rightarrow 3H_2O(l) + Na_3PO
- 20 ml of 0.15 M H_3PO_4 is required to neutralize 40 ml of a KOH solution. The molarity of the KOH solution is ________. H_3PO_4 + 3 KOH longrightarrow K_3PO_4 + 3 H_2O
- If 11.40 ml of 0.440 m KOH is required to titrate the unknown acid to the equivalence point, what is the concentration of the unknown acid?
- If 14.40 mL of 0.470 M KOH is required to titrate an unknown acid to the equivalence point, what is the concentration of the unknown acid?
- If 13.90 mL of 0.525 M KOH is required to titrate the unknown acid to the equivalence point, what is the concentration of the unknown acid?
- If 11.40 mL of 0.830 m KOH is required to titrate the unknown acid to the equivalence point, what is the concentration of the unknown acid?
- If 33.0 mL of 0.002 M aqueous H_3PO_4 is required to neutralize 28.0 mL of an aqueous solution of NaOH, determine the molarity of the NaOH solution.
- The titration of 10.00 ml of a diprotic acid solution of unknown concentration requires 21.37 ml of a 0.1432 M NaOH solution. What is the concentration of the diprotic acid solution?
- In a titration, 35.00 mL of a standard 0.737 M H_2SO_4 solution was used. At the end point of the titration, 62.4 mL of a KOH solution of unknown concentration had been neutralized. What is the molarity of the KOH solution? H_2SO_4(aq) + 2 KOH(aq) \to
- If 29.8 ml of the H_3PO_4 (phosphoric acid) reacts with 35.0 mL of 5.00 M KOH, what is the molarity of the acid? H_3PO_4 + 3KOH \rightleftharpoons K_3PO_4 + 3H_2O
- A 13.0 mL sample of an unknown H_3PO_4 solution requires 122 mL of 0.120 M KOH to completely react with the H_3PO_4.
- A 25.00-mL sample of an H2SO4 solution of unknown concentration is titrated with a 0.1328 M KOH solution. A volume of 38.33 mL of KOH was required to reach the endpoint. What is the concentration of t
- Calculate the volume (in mL) of a 1.350 M NaOH solution required to titrate 25.0 mL of a 1.500 M H3PO4 solution.
- Calculate the volume (in mL) of a 1.450 M NaOH solution required to titrate 25.00 mL of a 1.800 M H3PO4 solution.
- Calculate the volume (in mL) of a 1.420 M NaOH solution required to titrate 25.00 mL of a 1.500 M H3PO4 solution.
- The neutralization reaction given is: H3PO4(aq)+3NaOH(aq) -> 3H2O(l)+Na3PO4(aq). What is the concentration of the unknown H3PO4 solution?
- If a solution of 0.105 M NaOH is used to titrate 50.0 mL of a 0.0224 M H3PO4 solution, what volume of NaOH solution in mL is required?
- If a solution of 0.105 M NaOH is used to titrate 50.0 mL of a 0.0224 M H_3PO_4 solution, what volume of NaOH solution in mL is required?
- 26.30 mL of 0.1105 mol / L H_3PO_4 solution is neutralized by 139.50 mL of KOH. Calculate the mass of solid KOH required to prepare 500.0 mL of this solution.
- You titrate a 10.0 mL sample of phosphoric acid with a 1.65 M solution of the base potassium hydroxide. It takes 7.55 mL to reach the endpoint of the titration. What is the molar concentration of the
- What volume of a 0.50 M KOH solution is needed to neutralize completely each of the following? i) 10.0 mL of a 0.30 M HCl solution ii) 15.0 mL of a 0.25 M H_3PO_4 solution
- A quantity of 12.75 mL of a KOH solution is needed to neutralize 0.5109 g of KHP. What is the concentration (in molarity) of the KOH solution?
- A solution of 0.330 M KOH is used to neutralize 17.0 mL of a 0.188 M H3PO4 solution. What volume, on milliliters, of the KOH solution is required to reach the endpoint? H3PO4(aq) + 3KOH(aq) → 3H2O(l) + K3PO4(aq)
- Calculate the volume of a 1.420 M NaOH solution required to titrate 30.80 mL of a 1.500 M H_3PO_4 solution.
- Calculate the volume of a 1.420 M NaOH solution required to titrate 33.55 mL of a 1.500 M H_3PO_4 solution.
- Calculate the volume of a 1.420 M NaOH solution required to titrate 25.00 mL of a 1.500 M H_3PO_4 solution.
- Calculate the volume of a 1.420 M NaOH solution required to titrate 31.95 mL of a 1.500 M H3PO4 solution.
- The titration of 10.00 ml of an HCI solution of unknown concentration required 12.54 ml of 0.100 M NaOH solution to reach the equivalence point? What is the concentration of the unknown solution?
- Let's say you have 0.0100 L of HCl, but its concentration is unknown. If you titrated it with a 0.250 M KOH, and it took 9.80 mL of the base to neutralize the acid. What was the concentration of the HCl?
- The molarity of an aqueous solution of hydroiodic acid, HI, is determined by titration with a 0.145 M potassium hydroxide, KOH, solution. If 45.7 mL of potassium hydroxide solution are required to neutralize 50.0 mL of the acid, what is the molarity of th
- If 20.0 mL of an unknown acid was titrated with 2.0 M KOH and 60.0 mL KOH was used, what is the molarity of the unknown acid?
- If a 9.00 mL sample of unknown concentration of phosphoric acid, H_3PO_4 , is titrated with 14.34 mL of 0.1110 M Ca(OH)_2, (a) Write the balanced equation for this process. (b) What is the concentration of H_3PO_4?
- What volume (in mL) of 0.0992 M NaOH solution is required to reach the endpoint in the complete titration of a 15.0 mL sample of 0.107 M H3PO4?
- The titration of a 20.0 mL sample of an H2SO4 solution of unknown concentration requires 22.87 mL of a 0.158 M KOH solution to reach the equivalence point. What is the concentration of the unknown H2SO4 solution?
- What is the molarity of an HCl solution if 42.5 mL of a 0.110 M KOH solution is needed to titrate a 25.0-mL sample of the acid? A. 0.187 M HCl B. 0.587 M HCl C. 0.0647 M HCl D. 5.35 M HCl E. 1.70
- KHP was used to determine the concentration of a KOH solution. If 0.78 g of KHP was used and 42.17 mL of KOH was used to titrate it to the endpoint, what is its concentration?
- A 25.0 mL of 0.175 M H_3PO_4 reacts with 25.0 mL of 0.205 M KOH. a. Write a balanced chemical equation to show this reaction. b. Calculate the concentrations of H_3PO_4 and KOH that remain in solution, as well as the concentration of the salt that is form
- If 86 ml of 1.2 m Ba(OH)2 and 20 ml of H3PO4 are mixed together, what molarity of the acid is needed to neutralize the base?
- 1) What volume of 0.1M H2SO4 solution is needed to neutralize 40 mL of 0.2M NaOH solution? 2) If 25 mL of 0.2 M H3PO4 solution is needed to neutrailize 60 mL of Ba(OH)2, then what is the molarity of
- If a 25.0 mL sample of phosphoric acid, H_3PO_4, is completely neutralized by 137 mL of 0.100 M KOH, what is the molarity of the phosphoric acid? H_3PO_4 + 3 KOH \rightarrow 3 H_2O + K_3PO_4 Using the same chemical reaction as above, calculate how many
- Suppose 12.1 mL of a KOH solution is required to neutralize 20.9 mL of a 0.33 M HBr solution. What is the concentration of the KOH solution?
- A 25.00 mL sample of KOH is titrated with 21.83 mL of 0.2120 M HCl (aq). What is the concentration of the KOH solution? a.) 4.119 M. b.) 0.002574 M. c.) 0.2428 M. d.) 0.1851 M.
- The NaOH solution with a concentration of 0.188 M is used to titrate a diprotic acid of unknown concentration. 25.00 mL of the acid solution requires 26.54 mL of NaOH solution. What is the concentration of the acid solution?
- Calculate the molar concentration of H3PO4 in a cola sample. The volume of decarbonated cola used 25.00 mL, the molarity of NaOH used for titration is 0.0100 M, and the volume NaOH used at first equiv
- Suppose it requires 9.40 mL of a 0.10 M KOH solution to titrate 28.0 mL of an HCl solution of unknown concentration. Calculate the concentration of the HCl solution.
- The concentration of a solution of NaOH of unknown concentration was determined in the following titration: 25.00-mL aliquots of the NaOH solution, measured by pipette, were titrated with 0.1198 M H3PO4, requiring an average titre of 19.24 mL.
- Suppose you have 25.00 mL of phosphoric acid, and you do not know what it's concentration is. If you titrated it with a 0.733 M potassium hydroxide solution, and it took 39.50 mL of the base to neutralize the acid. What was the concentration of the phosph
- Titration of a 14.00 mL KOH (base) solution required 1.50 mL of 0.850 M acetic acid. What is the molarity of the KOH solution?
- A 33.00 mL sample of an H_2SO_4 solution of unknown concentration is titrated with a 0.1122 M KOH solution. A volume of 41.22 mL of KOH is required to reach the equivalence point. What is the concentration of the unknown H_2SO_4 solution?
- A 29.00 mL sample of an H2SO4 solution of unknown concentration is titrated with a 0.1122 M KOH solution. A volume of 43.22 mL of KOH was required to reach the equivalence point. What is the concentration of the unknown H2SO4 solution? (Express your answe
- How many mL of a 1.20 M H_3PO_4 solution are required to titrate 85.5 mL of a 0.465 M LiOH solution? H_3PO_4(aq) + 3LiOH (aq) \to Li_3PO_4(aq) + 3H_2O(l)
- Suppose 50.0 mL of an aqueous solution containing an unknown monoprotic weak acid is titrated with 0.200 M KOH. The titration requires 22.07 mL of the potassium hydroxide solution to reach the equivalence point. What is the concentration (in molarity) of
- What is the molarity of a potassium hydroxide solution, if 38.65 mL of the KOH solution is required to titrate 25.84 mL of 0.1982 M hydrochloric acid solution?
- In an acid-base titration, the neutralization of 25.00 mL of a solution of KOH (potassium hydroxide) of unknown concentration required the addition of 22.60 mL of 0.1532 M HNO3 (nitric acid). Calculate the molarity of the potassium hydroxide solution.
- A 5.00 mL sample of an aqueous solution of H_3PO_4 requires 43.2 mL of 0.285 M NaOH to convert all of the H_3PO_4 to Na_2HPO_4. The other product of the reaction is water. Calculate the molarity of th
- Suppose 24.60 mL of a 0.185 M HNO3 solution is titrated with 27.3 mL of a KOH solution. What is the molarity of the KOH solution?
- Calculate the volume, in mL, of a 0.216 M NaOH solution that will completely neutralize 8.60 mL of a 0.825 M H3PO4 solution.
- What volume in mL of a 0.0992 M NaOH solution is required to reach the endpoint in the complete titration of a 15.0 mL sample of 0.107 M H_3PO_4? Determine if each of the following substances is acidic, basic, or neutral. Also, calculate the H_3O^+ and OH
- The cola sample is 50.0 mL, the equivalence point volume is 13.4 mL, and the NaOH solution concentration is 0.025 M, what mass of H_3PO_4 was in the sample?