Copyright

1. Find the first three terms of the sequence a_n= \frac{(-6)^{sin ((2n+1)^n/2)}}{(n+1)!} 2....

Question:

1. Find the first three terms of the sequence

{eq}a_n= \frac{(-6)^{sin ((2n+1)^n/2)}}{(n+1)!} {/eq}

2. Find the first three terms of the sequence {eq}a_n= \frac{n!}{(n+4)!} {/eq}

3. {eq}5+.0005+.0000005 +...= {/eq}

4. {eq}\sum_{n=0}^{\infty} \frac{1}{(10n-7)- \frac{1}{(10n+3)}} {/eq}

5. {eq}\sum_{n=0}^{\infty} \frac{-10}{(100n^2-25)}{/eq}

Definition of Sequence, Geometric Series and Comparison Test:

Let {eq}\displaystyle f:\mathbb{N}\to \mathbb{R} {/eq} be a real valued function, where {eq}\displaystyle \mathbb{N} {/eq} denotes the set of all natural numbers, i.e. the set of all positive integer and {eq}\displaystyle \mathbb{R} {/eq} is set of all real numbers. Then {eq}\displaystyle \{f(n)\}=\{f(1),\;f(2), \;f(3), \cdots \} {/eq} is called a real infinite sequence or simply a sequence. Usually a sequence denoted by {eq}\displaystyle \left\{ {{a_n}} \right\} {/eq}, where {eq}{a_n} = f\left( n \right) ,\; n\in \mathbb{N} {/eq}.

If we have an infinite series in the form {eq}\displaystyle k+kr+kr^2+kr^3+kr^4+ \cdots kr^n {/eq}, where k is a constant and r is a common ratio between terms,

then we have an infinite geometric series. When {eq}|r| < 1 {/eq}, the sum of such a series is given by {eq}\displaystyle \frac{k}{1-r} {/eq}.

Sometimes, a series given in summation notation won't be automatically recognizable as a geometric series,

but we can rewrite it using properties of series to take advantage of the geometric series formula.

If {eq}\sum\limits_{u = 1}^\infty {{w_k}} {/eq} and {eq}\sum\limits_{u = 1}^\infty {{c_k}} {/eq} be nonnegative series and

if {eq}\sum\limits_{u = 1}^\infty {{c_k}} {/eq} converges and {eq}0 \leqslant {w_k} \leqslant {c_k} {/eq} for all {eq}k \geqslant u {/eq} ,then {eq}\sum\limits_{l = 1}^\infty {{w_k}} {/eq} converges.

if {eq}\sum\limits_{l = 1}^\infty {{c_k}} {/eq} diverges and {eq}0 \leqslant {c_k} \leqslant {w_k} {/eq} for all {eq}k \geqslant 1 {/eq} ,then {eq}\sum\limits_{l = 1}^\infty {{w_k}} {/eq} diverges.

Answer and Explanation: 1

{eq}\displaystyle \eqalign{ & 1. \cr & {a_n} = \frac{{{{( - 6)}^{\sin \left( {\frac{{{{(2n + 1)}^n}}}{2}} \right)}}}}{{(n + 1)!}} \cr & {\text{Sequence for the value }}n = 1,2,3. \cr & {a_1} = \frac{{{{( - 6)}^{\sin \left( {\frac{{(2 + 1)}}{2}} \right)}}}}{{(1 + 1)!}} = \frac{{{{( - 6)}^{\sin \left( {\frac{3}{2}} \right)}}}}{2} \cr & {a_2} = \frac{{{{( - 6)}^{\sin \left( {\frac{{{{(4 + 1)}^2}}}{2}} \right)}}}}{{(2 + 1)!}} = \frac{{{{( - 6)}^{\sin \left( {\frac{{25}}{2}} \right)}}}}{6} \cr & {a_3} = \frac{{{{( - 6)}^{\sin \left( {\frac{{{{(6 + 1)}^3}}}{2}} \right)}}}}{{(3 + 1)!}} = \frac{{{{( - 6)}^{\sin \left( {\frac{{343}}{2}} \right)}}}}{{24}} \cr & \cr & 2. \cr & {a_n} = \frac{{n!}}{{(n + 4)!}} \cr & {\text{Sequence for the value }}n = 1,2,3. \cr & {a_1} = \frac{{1!}}{{(1 + 4)!}} = \frac{1}{{120}} \cr & {a_2} = \frac{{2!}}{{(2 + 4)!}} = \frac{1}{{360}} \cr & {a_3} = \frac{{(3!)}}{{7!}} = \frac{1}{{840}} \cr & \cr & 3. \cr & 5 + 0.0005 + 0.0000005 + ........ \cr & 5 + \frac{5}{{{{10}^4}}} + \frac{5}{{{{10}^7}}} + ........ \cr & 5 + 5\left( {\frac{1}{{{{10}^4}}} + \frac{1}{{{{10}^7}}} + ........} \right) \cr & 5 + 5\frac{{\left( {\frac{1}{{{{10}^4}}}} \right)}}{{1 - \left( {\frac{1}{{{{10}^3}}}} \right)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\sum\limits_{n = 0}^\infty {a{r^n} = \frac{a}{{1 - r}},r < 1} } \right) \cr & 5 + 5\frac{{\left( {\frac{1}{{10}}} \right)}}{{1000 - 1}} \cr & 5 + \frac{1}{{1998}} \cr & \frac{{9990 + 1}}{{1998}} \cr & \frac{{9991}}{{1998}} \cr & \cr & 4. \cr & \sum\limits_{n = 0}^\infty {\frac{1}{{(10n - 7) - \frac{1}{{(10n + 3)}}}}} \cr & \sum\limits_{n = 0}^\infty {\frac{{(10n + 3)}}{{(10n - 7)(10n + 3) - 1}}} \cr & {\text{Let,}} \cr & {a_n} = \frac{{(10n + 3)}}{{(10n - 7)(10n + 3) - 1}} \cr & {b_n} = \frac{1}{n} \cr & {a_n} > {b_n},\forall n \cr & {\text{From p - series test }}\sum {{b_n}{\text{ is divergent for }}} p = 1. \cr & {\text{By comparison test }}\sum {{a_n}{\text{ is also divergent}}{\text{.}}} \cr & \cr & 5. \cr & \sum\limits_{n = 0}^\infty {\frac{{ - 10}}{{(100{n^2} - 25)}}} \cr & - 10\sum\limits_{n = 0}^\infty {\frac{1}{{(100{n^2} - 25)}}} \cr & {\text{Let,}} \cr & {a_n} = \frac{1}{{(100{n^2} - 25)}} \cr & {b_n} = \frac{1}{{{n^2}}} \cr & {a_n} < {b_n},\forall n \cr & {\text{From p - series test }}\sum {{b_n}{\text{ is convergent for }}} p = 2 > 1. \cr & {\text{By comparison test }}\sum {{a_n}{\text{ is also convergent}}{\text{.}}} \cr} {/eq}


Learn more about this topic:

Loading...
Convergence & Divergence of a Series: Definition & Examples

from

Chapter 28 / Lesson 3
46K

Convergence and divergence of a series in math follows some specific rules. Learn the rules as well as the geometric series convergence test. Also see examples.


Related to this Question

Explore our homework questions and answers library