1. Find the corresponding rectangular coordinates for the polar point (-2, 7pi/6) 2. Convert...
Question:
1. Find the corresponding rectangular coordinates for the polar point {eq}\displaystyle (-2,\frac{7\pi }{6}) {/eq}
2. Convert the rectangular equation {eq}\displaystyle x^{2}+y^{2}-2y=0 {/eq} to polar form,
a) {eq}\displaystyle r=2\cos \theta {/eq}
b) {eq}\displaystyle r=\frac{1}{2}\csc \theta {/eq}
c) {eq}\displaystyle r=2\sin \theta {/eq}
d) {eq}\displaystyle r=-2\sin \theta {/eq}
e) None of the above
3. Convert the rectangular equation {eq}\displaystyle x^{2}=3y {/eq} to polar form.
a) {eq}\displaystyle r=3\sin \theta -\cos ^{2}\theta {/eq}
b) {eq}\displaystyle r=3\sec \theta \tan \theta {/eq}
c) {eq}\displaystyle r=3\csc \theta \cot \theta {/eq}
d) {eq}\displaystyle r=3\cos \theta -\sin ^{2}\theta {/eq}
e) None of the above.
Polar Coordinates
To convert rectangular equations {eq}\displaystyle f(x,y)=0 {/eq} into polar coordinates {eq}\displaystyle g(r,\theta)=0 {/eq} we will use the following rectangular-polar conversion {eq}\displaystyle x=r\cos \theta, y=r\sin \theta. {/eq}
To obtain a polar point when the rectangular coordinates are given, we should keep in mind that the polar form is not unique,
because we can read the polar angle clockwise or counterclockwise or the polar radius, positive or negative,
therefore it may be up to four polar forms corresponding to a unique Cartesian form.
Answer and Explanation: 1
Become a Study.com member to unlock this answer! Create your account
View this answer1. To write the rectangular coordinates of the polar point {eq}\displaystyle \left(-2, \frac {7\pi}{6} \right) \iff r=-2, \theta= \frac...
See full answer below.
Learn more about this topic:
from
Chapter 24 / Lesson 1Learn how to graph polar equations and plot polar coordinates. See examples of graphing polar equations. Transform polar to rectangular coordinates and vice versa.