1. Assume that x and y are both differentiable functions of t and find the required values of d...
Question:
1. Assume that x and y are both differentiable functions of t and find the required values of {eq}\frac{\mathrm{d} y}{\mathrm{d} t} {/eq} and {eq}\frac{\mathrm{d} x}{\mathrm{d} t} {/eq}.
(a) Find {eq}\frac{\mathrm{d} y}{\mathrm{d} t} {/eq} when x = 5, given that {eq}\frac{\mathrm{d} x}{\mathrm{d} t} {/eq} = 5.
(b) Find {eq}\frac{\mathrm{d} x}{\mathrm{d} t} {/eq} when x = 6, given that {eq}\frac{\mathrm{d} y}{\mathrm{d} t} {/eq} = 1.
2. A spherical balloon is inflated with gas at a rate of 700 cubic centimeters per minute.
(a) How fast is the radius of the balloon changing at the instant the radius is 60 centimeters?
(b) How fast is the radius of the balloon changing at the instant the radius is 80 centimeters?
Rate of Change:
We will find the rate of change of radius by first writing the expression for the volume of the sphere and then differentiating it and then plug-in the values.
Answer and Explanation: 1
Become a Study.com member to unlock this answer! Create your account
View this answerTo find the rate of change of radius we will use the volume expression of the sphere:
{eq}V=\frac{4}{3}\pi r^{3} {/eq}
Now let us differentiate the...
See full answer below.
Ask a question
Our experts can answer your tough homework and study questions.
Ask a question Ask a questionSearch Answers
Learn more about this topic:

from
Chapter 8 / Lesson 7Rates of change show how fast a parameter changes with respect to another reference parameter. Learn about rates of change, how to graph rates of change, and see the difference between positive and negative rates of change.
Related to this Question
- Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. xy = 2 a. Find dy/dt, when x = 4, given that dx/dt = 13. b. Find dx/dt, when x = 1, given that dy/dt = -9.
- Assume that x and y are both differentiable functions of t and find the required values of d y d t , d x d t , x y = 4. a) find d y d t , given that x=2 and d x d t = 14. , b) find d x d t given x=1 and d y d t = 6
- Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. xy = 4 (a) Find dy/dt, given x = 2 and dx/dt = 15. (b) Find dx/dt, given x = 1 and dy/dt = -6.
- Assume that x and y are both differentiable functions of t and find the required values of dy / dt and dx / dt. xy = 8. (a) Find dy / dt, given x = 6 and dx / dt = 13. (b) Find dx / dt, given x = 1 a
- Given x^2 + y^2 = 225. Assume that x and y are both differentiable functions of t and find the required values of dx/dt. Find dy/dt, given x = 9, y = 12, and dx/dt = 8. Find dx/dt, given x = 12, y = 9, and dy/dt = 4.
- Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. xy = 4 a) Find dy/dt, given x = 8 and dx/dt = 11.(b) Find dx/dt, given x = 1 and dy/dt=-8.
- Assume that x and y are both differentiable functions of t and find the required values of \frac{dy}{dt} and \frac{dx}{dt} y=\sqrt x (a) Find \frac{dx}{dt}, given x = 25 and \frac{dy}{dt} = 3. (
- Assume that x and y are both differentiable functions of t and find the required values of \frac{dy}{dt} and \frac{dx}{dt}. (a) Find \frac{dy}{dt} when x = 5, given that \frac{dx}{dt} = 3. \frac{dy}
- Assume that x and y are both differentiable functions of t , and find the required values of d y d t and d x d t . y = 2 ( x 2 ? 3 x ) (a) Find d y d t when x = 3 , given that d x d t = 5
- 1. Assume that x and y are both differentiable functions of t, find the required values of dy/dt and dx/dt. xy = 4 (a) Find dy/dt, when x = 2, given that dx/dt = 10. (b) Find dx/dt, when x = 1, given
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{0.20in} & \hfill\underline{\text{Find\hfill & \hspace{0.20
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{.20in} & \hfill\underline{\text{Find\hfill & \hspace{.20in
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{.19in} & \hfill\underline{\text{Find\hfill & \hspace{.19in
- Assume that \, x\, and \, y\, are both differentiable functions of \, t\, and find the required values of \, dy/dt\, and \, dx/dt. \begin{array}{cclcc} \underline{\text{Equation & \hspace{0.19in} & \hfill\underline{\text{Find\hfill & \hspace{0.19
- Assume that x and y are both differentiable functions of the required value of dy/dt and dx/dt. xy=8 Find dx/dt, when x=1, given that dy/dt=-7.
- Assume that x and y are both differentiable functions of the required value of dy/dt and dx/dt. xy=8 Find dy/dt, when x=6, given that dx/dt=12.
- Assume that x and y are differentiable functions of t . Find \frac{\text{d}y}{\text{d}t}(4) using the given values: xy=x+4,\ \frac{\text{d}x}{\text{d}t}(4)= 5 .
- Assume x and y are both differentiable functions of t and 3x^yy = 30 . Find \frac{dy}{dt} if \frac{dx}{dt} = 6 and x=1 .
- Find the values of m and b that make the following function differentiable; f(x) = \left\{ {\matrix{ x^3 \cr {mx + b} \cr } } \right.~~\matrix{ {x \le 1} \cr {x greater than 1} \cr }
- Assume that x and y are differentiable functions of t. For the following, find \frac{dx}{dt} given that x = 3, y = 9, and \frac{dy}{dt} = 2. y^2 = 2xy + 27
- Assume that x and y are both differentiable functions of the required value of dy/dt and dx/dt. y=square root of{x} Find dy/dt, when x=9, given that dx/dt=3.
- Assume that x and y are both differentiable functions of the required value of dy/dt and dx/dt. y=square root of{x} Find dx/dt, when x=81, given that dy/dt=3.
- Suppose f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2, and g'(1) = 3. Find the value of h'(1). h(x) = (x^2 + 4) g(x)
- Suppose f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2, and g'(1) = 3. Find the value of h'(1), where h(x) = (x f(x)) / (x + g(x)).
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 2, f '(1) = -1, g(1) = -2 , and g'(1)=3 . Find h'(1). h(x) = ( x^2 + 8 ) g(x)
- Suppose that f(x) and g(x) are differentiable functions such that f(1) = 2, f'(1) = 4, g(1)=5,\space \text{and} g' (1)= 3. Find h' (1) when h(x)=\frac{f(x)}{g(x)}.
- Assume that x and y are both differentiable functions of t and find the required values of dy/dt and dx/dt. y = ? x (a) find dy/dt, given x=16 and dx/dt=2 dy/dt= (b) find dx/dt,given x=36 and dy/d
- Assuming that the equations define x and y implicitly as differentiable functions x = f(t), y = g(t), find
- Assume that (f/g) (x) = x^2 + 2x, where f and g are differentiable functions such that f (2) = 2 and f' (2)= 3. Find g' (2).
- (a) Suppose that f and g are function that are differentiable at x = 1 and that f (1) = 4, f' (1) = -6, g (1) = -4, and g' (1) = 2. Find h'(1). h (x) = {f (x) g (x)} / {f (x) - g (x)}. (b) Find the de
- Show how to find all values at which a function is differentiable.
- Suppose u and v are differentiable functions of x and that u(0) = 5, u'(0) = -3, v(0) = -1, v'(0) = 2. Find the value of d(7v - 2u)/dx at x = 1.
- Suppose f and g are functions that are differentiable at x = 2 and that f' (2) = 1, f (2) = 3, g' (2) = -1 and g (2) = 2. Then find the value of h' (2) if h (x) = x. f (x).
- Suppose f \text{ and } g are functions that are differentiable at x = 1 and that f(1) = 2, \ f (1) = 1, \ g(1) = 2, \text{ and } g (1) = 3 . Find the value of h (1) , where h(x) = (x^2 + 11) g(x) .
- Suppose y = f(x) is differentiable function of x that satisfies the equation x^2y+y^2 = x^3. Find dy/dx implicitly
- Given that s^2 = x^2 + y^2, where x and y and s are differentiable function of t, find \frac{ds}{dt} when s = 20, x = 15, and \frac{dy}{dt} = 4 and \frac{dx}{dt} = 5.
- Assume that f(x) and g(x) are differentiable for all x. Let h(x) = 2f(x) + \frac{g(x)}{7}, find h'(x).
- Assume that f(x) and g(x) are differentiable for all x. Let \displaystyle h(x) =\frac{f(x)g(x)}{5}, find h'(x). h'(x) = _____
- Let f be a differentiable function. If h (x) = (1 + f (3x))^2, find h' (x).
- Suppose that f and g are functions that are differentiable at x = 1 and that f (1) = 2, f' (1) = -1, g (1) = -2, and g' (1) = 3. Find h' (1). h (x) = (x^2 + 7) g (x).
- Suppose that f and g are functions that are differentiable at x = 1 and that f (1) = 2, f' (1) = -1, g(1) = -2, and g'(1) = 3. Find h' (1). h (x) = (x^2 + 9) g (x)
- Suppose that f and g are functions that are differentiable at X 1 and that f(1) 2, f (1) -1, g(1) -2, and g (1) 3. Find h 1). h(x) (x2 10)g(x) h(1)
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 4, f '(1) = - 6, g(1) = - 4, and g'(1) = 2. Find h'(1). h(x) = (f(x) g(x)) / (f(x) - g(x))
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 4, f '(1) = -4, g(1) = -4, and g'(1) = 4. Find h'(1). h(x) = f(x)g(x) / (f(x) - g(x))
- Let f (x, y, z) be a given differentiable function and define a new function g (x, y, z) = f (yz, zx, xy). Suppose that f_x (1, 1, 1) = 1, f_y (1, 1, 1) = 2, f_z (1, 1, 1) = 3. Find the following. (a)
- Let f(x, y, z) be a given differentiable function and define a new function g(x, y, z) = f(yz, zx, xy). Suppose that f_{x}(1, 1, 1) = 1, f_{y}(1, 1, 1) = 2, f_{z}(1, 1, 1) = 3. Find: a) g_{x}(1, 1, 1
- Let f(x,y,z) be a given differentiable function and define a new function g(x,y,z) = f(yz,zx,xy). suppose that f_x(1,1,1) = 1 , f_y(1,1,1) = 2 , f_z(1,1,1) = 3 . Find . (a) g_x(1,1,1) . (b) g_y(1,1,1)
- Find the value of a that makes the following function differentiable for all x-values. g(x)={ ax,&{if}&x 0x^2-9x,& {if}&xgeq 0.
- Suppose that f is a differentiable function with f_x (8,0) = 8 and f_y (8, 0) = 7. Let w(u, v) = f (x(u, v), y(u, v)) where x = 8 cos u + 2 sin v and y = 8 cos u sin v. Find w_v (0, 0).
- Find the values of a and b that make the following function differentiable for all x \\ f(x) = \begin{cases} a^2x + b, & \text{ if } x \gt 1\\ bx^2 + 3, & \text{ if } x \leq 1 \end{cases}
- Assume that x and y are both differentiable functions of t and find the required values of \frac{dx}{dt}. x^{2} + y^{2} = 25 (a) Find \frac{dy}{dt}, given x = 3, y = 4, and \frac{dx}{dt} = 7. (b) Find
- Suppose that f(x) and g(x) are differentiable such that f(2) = 6, f '(2) = 4, g(2) = 7, and g '(2) = 1. Find h '(2) when h(x) = f(x) / g(x). h '(x) =
- Suppose that f(x) and g(x) are differentiable functions such that f(5) = 4, f'(5) = 3, g(5) = 2, and g'(5) = 1. Find h'(5) when h(x) = f(x)/g(x).
- Suppose that f(x) and g(x) are differentiable functions such that f(0) = 9, \enspace f'(0) = 7, \enspace g(0) = 4, \enspace g'(0) = 2. Find \dfrac{d}{dx} \left(f(x)g(x)\right) \Bigg|_{x = 0}.
- Find the values of a and b that make the following function differentiable for all x-values. f(x) = \begin{cases} ax + b, x -1 \\bx^2 - 3, x\leq -1\end{cases}
- Find the values of a and b that make the following function differentiable for all x values. f(x) = { a(2x+4/x^2+1) + be^{sin x} if x greater than equal to 0, x^4+x+7, if x less than 0.
- Show that f ( x ) = { x 2 sin ( 1 x ) , i f x 0 0 , i f x = 0 is differentiable at x = 0 and find f ( 0 )
- Suppose that f\left ( x \right ) and g\left ( x \right ) are differentiable functions such that f\left ( 6 \right ) = 1, {f}' \left ( 6 \right ) = 9, g\left ( 6 \right ) = 8 and {g}' \left ( 6 \right ) = 3. Find {h}' \left ( 6 \right ) when h\left ( x \ri
- Find: Determine for what points the following functions are differentiable and describe (qualitatively) 1. f (x,y) = e^{xy} \cos (\pi(xy+1)) 2. g (x,y) = \frac{x4 - y4 }{ x + y} 3. h (x,y) = x - 2y \
- The function f is differentiable and \int_0^x (4f(t)+5t)dt=\sin (x). Determine the value of f'(\frac{\pi}{6}). a. \frac{5}{4} b. \frac{\sqrt 3}{8}-\frac{5\pi}{24} c. 0 d. \frac{\sqrt 3}{2} e. -\frac{11}{8}
- Suppose f is differentiable on R. Let F(x) = f(e^x) and G(x) = e^f(x). Find expressions for (a) F'(x) and (b) G'(x).
- a) Find all functions f such that f'(x) = 1 for all x. b) For a differentiable function g, find an expression for(1/g)' (x). c) Let h be a differentiable function such that h'(x) = h^2(x) for all x (this is known as a differential equation). Find (1/h)'
- Suppose f and g are functions that are differentiable at x= 1 and that f(1)= 7, f '(1)= 9, g(1)= 6, and g '(1)= 2. Find the value of h '(1). h(x)= \frac{f(x)g(x)}{f(x) - g(x)}
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2, g'(1) = 3. Suppose h(x) = f(x)g(x). Find the value of h'(1).
- Let p ( t ) = f ( g ( t ) , h ( t ) ) , where f is differentiable, g ( 2 ) = 4 , g ? ( 2 ) = ? 3 , h ( 2 ) = 5 , h ? ( 2 ) = 6 , f x ( 4 , 5 ) = 2 , f y ( 4 , 5 ) = 8. . Find p ? ( 2 ) .
- Suppose f is differentiable on R. Let F(x) = f(ex) and G(x) = ef(x). Find expressions for (a) F (x) and (b) G (x)
- Assuming that this function is differentiable, solve y = \frac{1 + xf(x)}{\sqrt {x.
- Suppose f is a differentiable function of x and y, and g(r,s)=f(5r-s,s^{2}-6r) . Use the table of values below to calculate g_{r} (9,4) and g_{s} (9,4)g_{r}(9,4)= g_{s}(9,4)=
- Suppose that f and g are functions that are differentiable at x = 1 and that f(1) = 1, \; f'(1) = -3, \; g(1) = 2, and g'(1) = 5. If h(x)=f(x)g(x), find h'(1).
- Suppose f is a differentiable function of x and y, and g(r,s)=f(4r-s, \ s^2-7r). Calculate g_r(4,1) and g_s(4,1) using the given table of values. \displaystyle \begin{array}{|c|c|c|c|c|} \hline
- Suppose f is a differentiable function such that (1) f(x + y) = f(x) + f(y) + 2xy for all real numbers x and y and (2) \lim_{h \to 0} \frac{f(h)}{h} = 7. Determine f(0) and find the expression for f(x). (Hint: find f'(x).)
- Find f' for each of the following where g and k are differentiable functions. F= g(\sqrt{k(x^2)})
- Find: Suppose y = -(2x+1), where x and y are functions of t. a) if \frac{dx}{dt}=3, find \frac{dy}{dt} when x=4 b) if \frac{dy}{dt}=5, find \frac{dx}{dt} when x=12
- Find A and B given that the function, f(x) is differentiable at x=1. f(x)= \begin{cases} x^2-5 & x<1 \\ Ax^2+Bx & x \geq1 \end {cases}
- Find the function below, find the values of x in which f'(x) = 0. f(x) = (x^2 - 3) (x^2 - \sqrt 5)
- If z = f(x, y), where f is differentiable, and x = g(t) , y = h(t) g(4) = 5 , h(4) = -5 g'(4) = -5, h'(4) = -1 { f_x (5, -5) = 1, f_y (5, -5) = 6 } find dz/dt when t = 4. { \frac{dz}{dt} =
- Use the table of values for the differentiable functions f(x) and g(x) to evaluate the following expressions: \begin{array}{|l|l|l|l|l|} \hline x & f(x)&g(x)&f'(x)&g'(x)\\ \hline -3&0&-3&5&3\\ \hline
- If f(x) is a function differentiable at x = 1 and f(1) = 1/8. What is the value of f(x) - f(1)
- Find f'(x) for the following functions. (a) f(x) = \sin^4(4x^5) (b) f(x) = g^n(\tan(x^2)), where g is a differentiable function and n is a constant.
- Suppose h and g are functions that are differentiable at x = 1 and that f(1) = 2, f'(1) = -1, g(1) = -2 and g'(1) = 3. Find the value of h'(1). h(x) = \frac{x f(x)}{x + g(x)}. The answer should be
- Suppose that f(x) \text{ and } g(x) are differentiable functions such that f(6)=2, \ f (6)=3, \ g(6)=8, \text{ and } g (6)=9 . Find \frac{\text{d{\text{d}x} \left(f(x)g(x)\right) \text{ at } x=6 .
- Find h (x) where f(x) is an unspecified differentiable function. h(x) = f(x) / x^{15}
- For the given functions f and g, find the requested function. f(x) = x - 4; g(x) = 4x^2. Find (f + g)(x).
- Suppose u and v are differentiable functions of x and that u(0) = 5, u'(0) = -3, v(0) = -1, v'(0) = 2. Find the value of d(u/v)/dx at x = 1.
- Suppose u and v are differentiable functions of x and that u(0) = 5, u'(0) = -3, v(0) = -1, v'(0) = 2. Find the value of d(uv)/dx at x = 1.
- Suppose u and v are differentiable functions of x and that u(0) = 5, u'(0) = -3, v(0) = -1, v'(0) = 2. Find the value of d(v/u)/dx at x = 1.
- Let f(x, y, z) be a given differentiable function and define a new function g(x, y, z) = f(yz, zx, xy). Suppose that f_x(1, 1, 1) = 1, f_y(1, 1, 1) = 2, f_z(1, 1, 1) = 3. Find the following.g_x
- Find: 1. Consider the function f(T) =\sqrt{2x-3+1} . (a) (7 points) Use the definition of the derivative to find f'(x) No marks will be given if the definition is not used. (b) (3 points) Find the
- Find: Suppose f is a differentiable function such that 1. f(g(x)) = x and f (x) = 1 + \left [ f(x) \right ] 2. Show that g (x) = \frac{1}{(1 + x^2)}.
- Two functions f & g are differentiable and h(x)= f(g(x)). Suppose f(0)=4, f'(0)=3, g(0)=1, g'(0)=2, h(0)=1, h'(0)=6. Find the values of f(1) and f'(1).
- Find f'(x) and find the value(s) of x where f'(x) = 0. f(x) = \frac{x}{x^{2} + 9}
- Find f'(x) and find the value(s) of x where f'(x) = 0. f(x) = \frac{x}{x^2 + 169}
- Find f'(x) and find the value(s) of x where f'(x) = 0. f(x) = x/(x^2 + 16).
- A. Suppose \int\limits_0^1 f(t) dt = 3. Find \int\limits_1^{1.5} f(3 - 2t) dt. B. Let f be twice differentiable with f(0) = 6, f(1) = 5, and f'(1) = 2. Find \int\limits_0^1 xf''(x) dx.
- Suppose u and v are differentiable functions at t = 0 with u(0) = <0,1,1>, u'=<0,7,1>, v(0) = <0,1,1>, and v'(0) = <1,1,2>. Evaluate: a) \frac {d}{dt} (u.v)|_{t=0}
- a) Let f(x) = \sqrt{x + \sqrt{x. Find f'(x). b) Let f(x) = \sqrt{x + \sqrt{x + \sqrt{x}. Find f'(x). c) Let f be a differentiable function and g(x) = f (x + f(x)). Find a formula for g'(x) and g''(x).
- Suppose that a function z = f(x, y) is implicitly defined by an equation: x y z + x + y 2 + z 3 = 0 . a. Find
- Suppose f ? 1 is the inverse function of a differentiable function f and f ( 4 ) = 5 , f ? ( 4 ) = 2 3 . Find ( f ? 1 ) ? ( 5 ) .